Electromagnetism

Biot – Savart's Law and Ampere's Circuital Law

3) 1.0 A

In the given circuit for ideal diode, the current through the battery is

2) 1.5 A

2011

1) 0.5 A

1) 0°

1.

	4) 2A	5) 2.5 A			
2.	The statement "Pol	arity of induced emf	is such that it tends	to produce a current v	which
	opposes the change	in magnetic flux that	produced it" is kno	own as	
	1) Faraday's law	2) Gauss's law	3) Coulomb's la	aw 4) Lenz's law	
2010			. (
3.	A wire carrying c	urrent I and other	carrying 2i in the	same direction produ	ace a
	magnetic field B at	the mid – point. Wh	at will be the field	when 2i current is swi	tched
	off?				
	1) B/2	2) 2B	3) B	4) 4B	
4.	The distance at wh	ich the magnetic fiel	d on axis as compa	red to the magnetic fie	eld at
	the centre of the co	il carrying current I a	and radius R is $1/8$, v	would be	
	1) R	$2) \sqrt{2} R$	3) 2R	4) $\sqrt{3}$ R	
5.	The current in stra	aight wire if the mag	gnetic field $10^{-6}Wm^{-1}$	produced at 0.02m	away
	from it is	20			
	1) 0.1 A	2) 1 A	3) Zero	4) 10 A	
6.	An electric current	passes through a lon	g straight copper w	ire. At a distance 5cm	from
	the straight wire, the	he magnetic field is E	3. The magnetic field	d at 20cm from the str	aight
	wire would be				
	1) $\frac{B}{6}$	2) $\frac{B}{4}$	3) $\frac{B}{3}$	4) $\frac{B}{2}$	
7.	For the magnetic	field to be maximun	n due to a small e	lement of current car	rying
	conductor at a poin	t, the angle between t	the element and the	line joining the elemen	t and
	the line joining the	element to the given j	point must be		

3) 180°

4) 45°

2) 90°

	centre of the loop is			
	1) Independent of L		2) Proportional to L^2	
	3) Inversely proportion	al to L	4) Linearly proportiona	al to L
10.	A solenoid of length	50cm and a radius of	cross – section 1cm ha	as 1000 turns of wire
	wound over it. If the	current carried is 5A, t	he magnetic field on its	s axis, near the centre
	of the solenoid is appr	oximately (permeabili	ty of free space $\mu_o = 4\pi$	$\times 10^{-7} T - mA^{-1})$
	1) $0.63 \times 10^{-2} T$	2) $1.26 \times 10^{-2} T$	3) $251 \times 10^{-2}T$	4) 6.3 T
11.	Mark the correct stat	ement		
	1) For long parallel co	onductors carrying stead	y current, the Biot – Sa	avart law and Lorentz
	force yield results in ac	ecordance with Newton's	s third law.	
	2) For long parallel co	onductors carrying stead	y current, the Biot – Sa	avart law and Lorentz
	force, Newton's third l	aw does not hold good.		
	3) For long parallel co	onductors carrying time	varying currents, the I	Biot – Savart law and
	Lorentz force, Newton	's third law holds good.		
	4) Both (a) and (c) are	correct.		
12.	A helium nucleus ma	akes full rotation in a	circle of radius 0.8m	in 2s. The value of
	magnetic field B at th	e centre of the circle, w	rill be (μ_o = permeabili	ty constant)
	1) $\frac{2 \times 10^{-19}}{\mu_o}$	2) $2 \times 10^{-19} \mu_{\rm o}$	3) $10^{-19}\mu_{o}$	4) $\frac{10^{-19}}{\mu_{\rm o}}$
13.	A winding wire which	n is used to frame a sol	enoid can bear a maxi	mum 10A current. If
	length of solenoid is 8	0cm and its cross – sec	tional radius is 3cm th	en required length of
	winding wire is			
	(B = 0.2T)			
	1) 1.2×10^2 m	2) 4.8×10^2 m	3) 2.4×10^3 m	4) 6×10^3 m
2009				

www.sakshieducation.com

A solenoid of 1.5m length and 4.0cm diameter possesses 10 turns/cm. A current of 5A is

A square conducting loops of side length L carries a current I. The magnetic field at the

3) $2\pi \times 10^{-3}G$

4) $2\pi \times 10^{-5}G$

flowing through it. The magnetic induction at axis inside the solenoid is

2) $2\pi \times 10^{-5}T$

8.

9.

1) $2\pi \times 10^{-3}T$

	will be equal.			
	Reason (R): Any	two charged particles	having equal kinetic e	nergies and entering a
	region of uniform	magnetic field B in a	direction perpendicu	lar to B, will describe
	circular trajectori	es of equal radii.		
	1) Both A and R are	e correct. R is the correct	explanation of A.	
	2) Both A and R are	e correct. R is not the corr	rect explanation of A.	
	3) A is true, but R i	s false.		cO'
	4) Both A and R are	e false.		G
15.	An electric curren	nt passes through a lor	ng straight wire. At a	distance 5cm from the
	wire, the magnetic	field is B. The field at 2	20cm from the wire wo	uld be
	1) 2B	2) B/4	3) B/2	4) B
16.	A wire is wound i	in the form of a soleno	id of length $m{l}$ and dist	ance d. When a strong
	current is passed t	hrough a solenoid, ther	e is a tendency to	
	1) Increase l but dec	crease d	2) Keep both l and d	constant
	3) Decrease <i>l</i> but in	crease d	4) Increase both l and	d d
17.	A closely wound	flat circular coil of 25	turns wire diameter	of 10cm which carries
	current of 4A, the	density at the centre of	a coil will be	
	1) $2.28 \times 10^{-6} T$	2) $1.678 \times 10^{-6} T$	3) $1.256 \times 10^{-3} T$	4) $1.572 \times 10^{-5} T$
18.	Two long straight	wires are set parallel	to each other. Each o	arries a current in the
	same direction an	d the separation betwe	een them is 2r. The in	tensity of the magnetic
	field mid – way be	tween them is		
	1) $\frac{\mu_o i}{r}$	$2) \; \frac{4\mu_o i}{r}$	3) Zero	4) $\frac{\mu_o i}{4r}$
19.	Two concentric cir	rcular loops of radii R	and 2R carry currents	of 2i and I respectively
	in opposite sense	(i.e, clockwise in one co	oil and counter – clock	wise in the other coil).
	The resultant mag	netic field at their comr	non centre is	
	1) $\mu_o \frac{i}{4R}$	$2) \ \mu_o \frac{5i}{4R}$	3) $\mu_o \frac{3i}{4R}$	4) $\mu_o \frac{i}{2R}$

Assertion (A): A proton and an alpha particle having the same kinetic energy are

moving in circular paths in a uniform magnetic field. The radii of their circular paths

21.	Magnetic field at the current of 4.414A is	e centre of a coil in th	he form of a square o	of side 2m carrying a
	1) $8 \times 10^{-5} T$	2) $5 \times 10^{-5} T$	3) $1.5 \times 10^{-5} T$	4) $6 \times 10^{-5} T$
22.	Which of the following	ng relation represents I	Biot – Savart's law?	
	$1) dB = \frac{\mu_o}{4\pi} \frac{dl \times r}{r}$	$2) dB = \frac{\mu_o}{4\pi} \frac{dl \times r}{r^2}$	$3) dB = \frac{\mu_o}{4\pi} \frac{dl \times r}{r^3}$	$4) dB = \frac{\mu_o}{4\pi} \frac{dl \times r}{r^4}$
23.	A long wire carries a	steady current. It is be	ent into a circle of one t	turn and the magnetic
	field at the centre of	f the coil is B. It is the	en bent into a circular	loop of n turns. The
	magnetic field at the	centre of the coil for sa	me current will be	
	1) nB	2) $n^2 B$	3) 2nB	$4) \ 2n^2B$
24.	The phenomena in w	hich proton flips is		
	1) Nuclear magnetic re	esonance	2) Lasers	
	3) Radioactivity		4) Nuclear fusion	
25.	A solenoid 1.5m lon	ng and 0.14cm in dian	neter possesses 10 tur	ns per cm length. A
	current of 5A falls th	rough it. The magnetic	field at the axis inside	the solenoid is
	1) $2\pi \times 10^{-3}T$	2) $2\pi \times 10^{-5}T$	3) $4\pi \times 10^{-2}T$	4) $4\pi \times 10^{-3}T$
26.	A long straight wire	of radius a carries a	steady current I. The	current is uniformly
	distributed across its	cross – section. The ra	tio of the magnetic fiel	d at $\frac{a}{2}$ and 2a is
	1) $\frac{1}{4}$	2) 4	3) 1	4) $\frac{1}{2}$
27.	Two concentric coils	each of radius equal	to 2π cm are placed a	t right angles to each
	other. 3A and 4A a	re the currents flowing	ng in each coil respec	ctively. The magnetic
	induction in Wbm^{-2}	at the centre of the coils	s will be $(\mu_o = 4\pi \times 10^{-7})$	$Wb A^{-1}m^{-1}$
	1) 12×10 ⁻⁵	2) 10 ⁻⁵	3) 5×10 ⁻⁵	4) 7×10^{-5}
		www.sakshiedu	cation.com	

A charge q coulomb makes n revolutions in one second in a circular orbit of radius r.

1) $\frac{2\pi rn}{q} \times 10^{-7}$ 2) $\left(\frac{2\pi q}{r}\right) \times 10^{-7}$ 3) $\left(\frac{2\pi q}{nr}\right) \times 10^{-7}$ 4) $\left(\frac{2\pi nq}{r}\right) \times 10^{-7}$

The magnetic field at the centre of the orbit in $NA^{-1}m^{-1}$ is

	3) A is true, but R	t is false.			
	4) Both A and R	are false.			
29.	Two identical wi	ires A and B have the s	same length L and carry	the same current I. W	/ire
	A is bent into a	circle of radius R and	l wire B is bent to forn	a square of side a. If	B_1
	and B_2 are the v	values of magnetic ind	uction at the centre of t	he circle and the centre	e of
	the square respe	ectively, then the ratio	B_1/B_2 is	~ •	
	1) $\frac{\pi^2}{8}$	$2) \frac{\pi^2}{8\sqrt{2}}$	$3) \frac{\pi^2}{16}$	$4) \frac{\pi^2}{16\sqrt{2}}$	
30.	The magnetic fie	eld at the centre of a c	ircular current carryin	g conductor of radius	r is
	B_c . The magnet	ic field on its axis at	a distance r from the	centre is B_a . The value	e of
	$B_c: B_a$ will be		XV		
	1) 1: $\sqrt{2}$	2) 1: $2\sqrt{2}$	3) $2\sqrt{2}:1$	4) $\sqrt{2}:1$	
31.	A vertical straig	ht conductor carries a	current upward. A poi	nt P lies to the east of i	it a
	small distance a	nd another point Q lie	es to the west at the san	ne distance. The magne	etic
	field at P is				
	1) Greater than at	· 950			
	2) Same as at Q	•			
	3) Less than at Q	•			
	4) Greater or less	than at Q depending up	on the strength of current	t	
32.	Two concentric	circular coils of ten t	urns each are situated	in the same plane. Th	ıeir
	radii are 20cm	and 40cm and they	carry respectively 0.2	A and 0.3A currents	in
	opposite directio	on. The magnetic field	in tesla at the centre is		
	1) $5\mu_o/4$	2) $\mu_o/80$	3) $7\mu_o/80$	4) $3\mu_{o}/4$	

www.sakshieducation.com

Assertion (A): The magnetic field produced by a current carrying solenoid is

independent of its length and cross – sectional area.

Reason (R): The magnetic field inside the solenoid is uniform.

2) Both A and R are correct. R is not the correct explanation of A.

1) Both A and R are correct. R is the correct explanation of A.

33.

between the two wires is

	$1) \frac{\mu_o I}{\pi r}$	$2) \frac{2\mu_o I}{\pi r}$	$3) \frac{\mu_o I}{2\pi r}$	4) Zero
34.	A long solenoid has 2	0 turns cm ⁻¹ . The curre	ent necessary to produc	ce a magnetic field of
	20mT inside the soler	oid is approximately		_
	1) 1A	2) 2A	3) 4A	4) 8A
35.	A long solenoid carr	ying a current produc	ees a magnetic field B	along its axis. If the
	current is doubled a	nd the number of tur	ns per cm is halved, t	the new value of the
	magnetic field is			
	1) 2B	2) 4B	3) B/2	4) B
36.	Two identical coils l	having same number	of turns and carrying	equal current have
	common centre and	their planes are at righ	nt angles to each other.	What is the ratio of
	magnitude of the rest	ultant magnetic field at	the centre and magnet	tic field due to one of
	the coils at the centre		Y	
	1) 1: $\sqrt{2}$	2) $\sqrt{2}:1$	3) 1 : 1	4) 2 : 1
37.	A straight wire of ma	ss 200g and length 1.5	m carries a current of 2	2A. It is suspended in
	mid – air by a unifo	rm horizontal magnet	ic field B. The magnit	ude of B (in tesla) is
	(Assume $g = 9.8 ms^{-2}$)			
	1) 2	2) 1.5	3) 0.55	4) 0.65
38.	A solenoid of length	0.5m has radius of 1cr	n and is made up of 50	00 turns. It carries a
	current of 5A. The m	agnitude of magnetic fi	eld inside the solenoid	is
	1) $6.28 \times 10^{-3} T$	2) $5 \times 10^3 T$	3) $3.2 \times 10^{-2} T$	4) $1.5 \times 10^{-5} T$
39.	For the magnetic fie	eld to be maximum d	ue to a small element	of current carrying
	conductor at a point	, the angle between the	element and the line j	oining the element to
	the given point must	be		
	1) 0°	2) 90°	3) 180°	4) 45°

Two long straight wires are set parallel to each other at separation r and each carries a

current I in the same direction. The strength of the magnetic field at any point midway

Biot - Savart's Law and Ampere's Circuital Law

Key

1) 2) **d** 3) **c** 4) d 5) **a** 6) **b** 7) **b** 8) **a** 9) **c**

11) **a** 12) **c** 13) **c** 14) **c** 15) **b** 16) **b** 17) **c** 18) **a** 10) **b** 19) **c**

29) **b** 25) **a** 26) **c** 27) **c** 28) b 20) **d** 21) **a** 22) **c** 23) **b** 24) **a**

37) **d** 35) **d** 36) **b** 33) **d** 34) **d** 39) **b** 30) **c** 31) **b** 32) **d**

1.
$$R = R_1 + R_2 = 5 + 5 = 10 \Omega$$

$$i = \frac{V}{R} = \frac{10}{10} = 1A$$

Solutions

1.
$$R = R_1 + R_2 = 5 + 5 = 10\Omega$$
 $i = \frac{V}{R} = \frac{10}{10} = 1A$

3. $B_1 = \frac{\mu_o}{4\pi} \cdot \frac{2i}{R}$ and $B_2 = \frac{\mu_o}{4\pi} \cdot \frac{4i}{R}$
 $B_2 - B_1 = \frac{\mu_o}{4\pi} \cdot \frac{2i}{r} = B$
 $B_2 = 2B_1$
 $2B_1 - B_1 = B$

$$B_2 - B_1 = \frac{\mu_o}{4\pi} \cdot \frac{2i}{r} = B_0$$

$$B_2 = 2B_1$$

$$B_2 = 2B_1$$

$$2B_1 - B_1 = B$$

$$\therefore B_1 = B$$

$$\therefore B_1 = B$$

4.
$$B_{\text{axis}} = \frac{\mu_o}{4\pi} \frac{2\pi I R^2}{\left(x^2 + R^2\right)^{3/2}}$$

At centre

$$B_{\text{centre}} = \frac{\mu_o I}{2R}$$
 www.sakshieducation.com

Dividing,
$$\frac{B_{axis}}{B_{centre}} = \frac{\mu_o I R^2}{2(x^2 + R^2)^{3/2}} \times \frac{2R}{\mu_o I}$$

$$\frac{R^3}{\left(x^2 + R^2\right)^{3/2}} = \frac{1}{8}$$

Or
$$\frac{R}{\left(x^2 + R^2\right)^{1/2}} = \frac{1}{2}$$

$$\Rightarrow x = \sqrt{3}R$$

5.
$$B = \frac{\mu_o}{4\pi} \times \frac{2i}{a}$$

$$\Rightarrow x = \sqrt{3}R$$

$$B = \frac{\mu_o}{4\pi} \times \frac{2i}{a}$$

$$\Rightarrow 10^{-6} = \frac{10^{-7} \times 2 \times i}{0.02} \Rightarrow i = 0.1A$$

$$B = \frac{\mu_o i}{2\pi r} \text{ or } B \approx \frac{1}{2} \text{ or } \frac{B_2}{B_1} = \frac{r_1}{r_2}$$

$$\therefore \frac{B_2}{B} = \frac{5}{20} = \frac{1}{4} \text{ or } B_2 = \frac{B}{4}$$

$$dB = \frac{\mu_o}{4\pi} \frac{idl \sin \theta}{r^2}$$
This is maximum when $\sin \theta = 1 = \sin 90^\circ$

$$\theta = 90^\circ$$

6.
$$B = \frac{\mu_o i}{2\pi r}$$
 or $B \propto \frac{1}{2}$ or $\frac{B_2}{B_1} = \frac{r_1}{r_2}$

$$\therefore \frac{B_2}{B} = \frac{5}{20} = \frac{1}{4} \text{ or } B_2 = \frac{B_2}{4}$$

7.
$$dB = \frac{\mu_o}{4\pi} \frac{idl \sin \theta}{r^2}$$

$$\theta = 90^{\circ}$$

8.
$$B = \mu_0 ni = 4\pi \times 10^{-7} \times 5 \times 1000 = 2\pi \times 10^{-3} T$$

$$\theta = 90^{\circ}$$
8.
$$B = \mu_{o} ni = 4\pi \times 10^{-7} \times 5 \times 1000 = 2\pi \times 10^{-3} T$$
9.
$$B_{1} = \frac{\mu_{o}}{4\pi} \times \frac{i}{(L/2)} [\sin 45^{\circ} + \sin 45^{\circ}]$$

$$=\frac{\mu_o}{4\pi} \times \frac{2\sqrt{2}i}{L}$$

Field at centre due to the four arms of the square

$$B = 4B_1 = \frac{\mu_o}{\pi} \times \frac{2\sqrt{2}i}{L}$$

$$\therefore B \propto \frac{1}{L}$$

10.
$$B = \mu_o ni$$

Here
$$\mu_o = 4\pi \times 10^{-7} T \, mA^{-1}$$

$$n = \frac{1000}{50 \times 10^{-2}}, i = 5A$$

$$B = 4\pi \times 10^{-7} \times \frac{1000}{50 \times 10^{-2}} \times 5$$

$$B = 1.26 \times 10^{-2} T$$

The magnetic field at the centre of a circle is given by 12.

$$B = \frac{\mu_o i}{2r}$$

where, i is current and r the radius of circle

Also,
$$i = \frac{q}{t}$$

For helium nucleus, q = 2e

$$\therefore i = \frac{2e}{t}$$

$$\therefore i = \frac{2e}{t}$$
Or $B = \frac{\mu_o.2e}{2rt} = \frac{\mu_o \times 2 \times 1.6 \times 10^{-19}}{2 \times 0.8 \times 2} = 10^{-19} \,\mu_o$

 $B = \frac{\mu_o Ni}{l}$, where N = total number of turns, l = length of the solenoid 13.

$$\Rightarrow 0.2 = \frac{4\pi \times 10^{-7} \times N \times 10}{0.8}$$

$$\Rightarrow N = \frac{4 \times 10^4}{\pi}$$

Since N turns are made from the winding wire, so length of the wire $(L) = 2\pi r \times N$ [$2\pi r =$ length of each turns]

$$\Rightarrow L = 2\pi \times 3 \times 10^{-2} \frac{4 \times 10^4}{\pi} = 2.4 \times 10^3 m$$

$$15. \qquad B = \frac{\mu_o 2I}{4\pi r}$$

When r = 5 cm

$$\therefore B = \frac{\mu_o 2I}{4\pi(5)} \qquad \dots (i)$$

When r = 20 cm

$$B' = \frac{\mu_o 2I}{4\pi (20)}$$
(ii)

From Equations, (i) and (ii), $B' = \frac{B}{4}$

18. At the midpoint,
$$BB_{net} = B_{AB} + B_{CD}$$

$$=\frac{\mu_o i}{2r} + \frac{\mu_o i}{2r} = \frac{\mu_o i}{r}$$

19.
$$B_1 = \frac{\mu_o \times 2i}{2 \times R}$$
 and $B_2 = \frac{\mu_o i}{4R}$

$$B_{\text{net}} = \frac{\mu_o i}{R} - \frac{\mu_o i}{4R} = \frac{3\mu_o i}{4R}$$

$$B_{\text{net}} = \frac{\mu_o i}{R} + \frac{\mu_o i}{4R} = \frac{3\mu_o i}{4R}$$
21.
$$B_{\text{centre}} = \frac{4 \times \mu_o}{4\pi} \times \frac{1}{(a/2)} (\sin 45 + \sin 45^\circ)$$

$$=4\times\frac{\mu_o}{4\pi}\times\frac{2I}{a}\times\frac{2}{\sqrt{2}}$$

$$= \frac{4\pi \times 10^{-7} \times 1.414 \times 2 \times \sqrt{2}}{\pi \times 2 \times 10^{-2}}$$

$$= 8 \times 10^{-5} T$$

25.
$$B = \mu_o nI$$

Here $n = 10 \text{ turns cm}^{-1} = 1000 \text{ turns m}^{-1}$, I = 5A

$$B = 4\pi \times 10^{-7} \times 1000 \times 5$$

$$=2\pi\times10^{-3}T$$

26. Current density
$$J = \frac{1}{\pi a^2}$$

From Ampere's circuital law

$$\oint B.dl = \mu.I_{\text{enclosed}}$$

For r < a

$$B \times 2\pi r = \mu_o \times J \times \pi r^2$$

$$\Rightarrow B = \frac{\mu_o I}{\pi a^2} \times \frac{r}{2}$$

At
$$r = a/2$$

$$B_1 = \frac{\mu_o I}{4\pi a}$$

$$B \times 2\pi = \mu_o I \Rightarrow B = \frac{\mu_o I}{2\pi r}$$

At $r = 2a$ $B_2 = \frac{\mu_o i}{4\pi a}$

At
$$r = 2a$$
 $B_2 = \frac{\mu_o i}{4\pi a}$

So,
$$\frac{B_1}{B_2} = 1$$

$$27. B_P = \frac{\mu_o I_2}{2R}$$

$$= \frac{4\pi \times 10^{-7} \times 4}{2 \times 0.02\pi} = 4 \times 10^{-5} Wb \, m^{-2}$$

$$B_Q = \frac{\mu_o I_1}{2R}$$

$$= \frac{4\pi \times 10^{-7} \times 3}{2 \times 0.02\pi} = 3 \times 10^{-5} Wb \, m^{-2}$$

$$\therefore B = \sqrt{B_P^2 + B_Q^2}$$

$$=\sqrt{\left(4\times10^{-5}\right)^2+\left(3\times10^{-5}\right)^2}$$

$$= 5 \times 10^{-5} Wb \, m^{-2}$$

29.
$$B_1 = \frac{\mu_o}{4\pi} \times \frac{2\pi I}{R}$$

$$=\frac{\mu_o}{4\pi}\times\frac{2\pi I\times2\pi}{L}$$

$$B_{1} = \frac{\mu_{o}}{4\pi} \times \frac{2\pi I}{R}$$

$$= \frac{\mu_{o}}{4\pi} \times \frac{2\pi I \times 2\pi}{L}$$

$$(\because L = 2\pi R, \text{ for circular loop})$$

$$B_{2} = \frac{\mu_{o}}{4\pi} \times \frac{I}{(a/2)} [\sin 45^{\circ} + \sin 45^{\circ}] \times 4$$
where
$$a = L/4$$

$$\therefore B_{2} = \frac{\mu_{o}I}{4\pi L} \times 8 \times 4 \times \left[\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}\right]$$

$$a = L/4$$

where
$$a = L/4$$

$$\therefore B_2 = \frac{\mu_o I}{4\pi L} \times 8 \times 4 \times \left[\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}\right]$$

$$\frac{\mu_o I}{4\pi L} \times \frac{64}{\sqrt{2}}$$

$$\frac{\mu_o I}{4\pi L} \times \frac{64}{\sqrt{2}}$$

Hence,
$$\frac{B_1}{B_2} = \left(\frac{\mu_o}{4\pi}\right) \times \frac{4\pi^2 I}{L} / \frac{\mu_o I}{4\pi L} \times \frac{64}{\sqrt{2}}$$

or
$$\frac{B_1}{B_2} = \frac{\pi^2}{8\sqrt{2}}$$

30. Magnetic induction at the centre of the coil of radius r is

$$B_c = \frac{\mu_o nI}{2r}$$

Magnetic induction on the axial line of a circular coil at a distance x from the centre is

$$B_a = \frac{\mu_o n r^2 I}{2(r^2 + x^2)^{3/2}}$$

Given x = r

$$\therefore B_a = \frac{\mu_o n r^2 I}{2(2r2)^{3/2}}$$

From Equations (i) and (ii), we get

$$\frac{B_c}{B_a} = \frac{2\sqrt{2}}{1}$$

$$32. \qquad B = \frac{\mu_o nI}{2r}$$

For first coil,
$$B_1 = \frac{\mu_o n I_1}{2r_1}$$

For second coil,
$$B_2 = \frac{\mu_o n I_2}{2r_2}$$

Resultant magnetic field at the centre of concentric loop is

$$B = \frac{\mu_o n I_1}{2r_1} - \frac{\mu_o n I_2}{2r_2}$$

But,
$$n = 10$$
, $I_1 = 0.2$, $r_1 = 20 cm = 0.20 m$

$$I_2 = 0.3A$$
, $r_2 = 40 \, cm = 0.40 \, m$

$$\therefore B = \mu_o \left[\frac{10 \times 0.2}{2 \times 0.2} - \frac{10 \times 0.3}{2 \times 0.4} \right] = \frac{5}{4} \mu_o$$

34.
$$B = \mu_0 nI$$

or
$$20 \times 10^{-3} = 4\pi \times 10^{-7} \times 2000 \times I$$

or
$$I = \frac{20 \times 10^{-3}}{4\pi \times 10^{-7} \times 2000}$$

$$\Rightarrow I \approx 8A$$

35.
$$B \propto nI$$

$$\therefore \frac{B_1}{B_2} = \frac{n_1 I_1}{n_2 I_2}$$

$$\frac{B_1}{B_2} = \frac{n_1 I_1}{n_2 I_2}$$
Here $n_1 = n$, $n_2 = \frac{n}{2}$, $I_1 = I$, $I_2 = 2I$, $B_1 = B$

$$\therefore \frac{B}{B_2} = \frac{n}{n/2} \times \frac{I}{2I} = 1$$
or $B_2 = B$

Hence, the required ratio will be

$$\therefore \frac{B}{B_2} = \frac{n}{n/2} \times \frac{I}{2I} = 1$$

or
$$B_2 = B$$

36.
$$B_r = \sqrt{B^2 + B^2} = \sqrt{2}B$$

Hence, the required ratio will be

$$\frac{B_r}{B} = \sqrt{2}$$

Magnetic force on straight wire 37.

$$F = BIl\sin\theta = BIl\sin 90^\circ = B_H$$

For equilibrium of wire in mid – air

$$F = mg$$

$$BIl = mg$$

$$\therefore B = \frac{mg}{Il} = \frac{200 \times 10^{-3} \times 9.8}{2 \times 1.5} = 0.65T$$

38. Number of turns per unit length

$$n = \frac{500}{0.5} = 1000 \,\mathrm{turns}\,\mathrm{m}^{-1}$$

Given l = 0.5m, r = 0.01m

Since
$$\frac{l}{a} = 50$$
, i.e., $l \gg a$

Therefore,
$$B = \mu_o ni = 4\pi \times 10^{-7} \times 10^3 \times 5$$

$$B = 6.28 \times 10^{-3} T$$

Motion of a charged particle in a magnetic field

2011

1. The total energy of electron in the second excited state is -2E. What is its potential energy in the same state with proper sign?

1) -2E

2) -4E

3) 4E

4) - E

2. Two particles A and B having equal charges +6C, after being accelerated through the same potential difference, enter a region of uniform magnetic field and describe circular paths of radii 2cm and 3cm respectively. The ratio of mass of A to that of B is

1) 4/9

2) 9/5

3) 1/2

4) 1/3

3. A metallic rod of length R is rotated through with an angular frequency ω with one end hinged at the centre and the other end at the circumference of a circular metallic ring of radius R, about an axis passing through the centre and perpendicular to the plane of the ring. There is a magnetic field B, perpendicular to the plane of the ring. The emf induced between the centre and the metallic ring is

1) $B\sin\omega t$

 $2) \frac{BR^2\omega}{2}$

3) $2BR^2\omega$

4) $BR^2\omega$

4. The path of a charged particle in a uniform magnetic field, when the velocity and the magnetic field are perpendicular to each other is a

1) Circle

2) Parabola

3) Helix

4) Straight Line

	experiences a magne	etic force of 6.5×10^{-17}	V . What is the speed of	the proton?
	1) $2 \times 10^5 ms^{-1}$	2) $4 \times 10^5 ms^{-1}$	3) $6 \times 10^5 ms^{-1}$	4) $6 \times 10^{-5} ms^{-1}$
6.	What uniform mag	netic field applied per	pendicular to a beam o	of electrons moving at
	$1.3 \times 10^6 ms^{-1}$, is requ	uired to make the electr	rons travel in a circular	arc of radius 0.35m?
	1) $2.1 \times 10^{-5} G$	2) $6 \times 10^{-5} T$	3) $2.1 \times 10^{-5} T$	4) $6 \times 10^{-5} G$
7.	A uniform electric	field and a uniform	magnetic field are a	cting along the same
	direction in a certa	in region. If an electr	con is projected in the	e region such that its
	velocity is pointed a	long the direction of fie	lds, then the electron	
	1) Speed will decreas	e		C
	2) Speed will increase	e		*
	3) Will turn towards	left of direction of motio	n	
	4) Will turn towards	right of direction of a mo	otion	
			C',O'	
2010				
8.	A deuteron of kinet	ic energy 50keV is des	scribing a circular orbi	it of radius 0.5m, in a
	plane perpendicular	to magnetic field B. T	The kinetic energy of a	proton that describes
	circular orbit of rad	ius 0.5m in the same pl	ane with the same mag	netic field is
	1) 200 keV	2) 50 keV	3) 100 keV	4) 25 keV
9.	_		H with its initial veloci	ty making an angle of
		h of the particle will be		
	1) Straight wire	2) A circle	3) An ellipse	4) A helix
10.	A charged particle i	moving with velocity 4	$\times 10^6 ms^{-1}$ enters perpendicular	ndicular to a magnetic
	field $B = 2Wbm^{-2}$. It	moves in a circular p	ath of radius 2cm, and	then charge per unit
	mass is			
	1) $10^2 C kg^{-1}$	2) $10^3 C kg^{-1}$	3) $10^4 C kg^{-1}$	4) $10^8 C kg^{-1}$
11.	An electron of mass	m and charge q is trav	velling with a speed v al	long a circular path of
	radius r at right ang	les to a uniform magno	etic field B. If speed of t	the electron is doubled
	and the magnetic fie	eld is halved, then resul	ting path would have a	radius of
	1) $\frac{r}{4}$	2) $\frac{r}{2}$	3) 2r	4) 4r
		www.sakshiedu	ucation.com	

A proton travelling at 23° w.r.t the direction of a magnetic field of strength 2.6mT

≠ 0, B ≠ 0 t on a moving could have is
_
could have is
$75\times10^2 ms^{-1}$
perpendicular
$\mathbf{uch that} r_a > r_b .$
$v_b > m_a v_a$
ection to north.
est
$f \ 2 \times 10^7 ms^{-1} $ at
$024 \times 10^{-12} N$
agnetic field of
is
N in z direction
ns are initially
rcular paths of
ant, the ratio
i i

A charged particle moves along a circle under the action of magnetic and electric fields,

19.	A beam of electrons	is moving with consta	nt velocity in a regio	on having electric and
	magnetic fields of str	rength $20 \ Vm^{-1}$ and 0.5	T at right angles to t	he direction of motion
	of the electrons. Wha	at is the velocity of the e	lectrons?	
	1) $20 \ ms^{-1}$	2) $40 \ ms^{-1}$	3) $8 ms^{-1}$	4) $5.5 \ ms^{-1}$
20.	A charged particle	with velocity $v = xi + $	yj moves in a mag	gnetic field $B = yi + xj$.
	Magnitude of the for	ce acting on the particle	e is F. The correct opt	ion for F is
	i) No force will act on	particle if $x = y$	ii) Force will act alon	g y - axis if y < x
	iii) Force is proportion	that to $(x^2 - y^2)$ if $x > y$	iv) Force is propor	tional to $(x^2 + y^2)$ if
	y > x			c0'
	1) I and ii are true	2) I and iii are true	3) ii and iv are true	4) iii and iv are true
21.	A charged particle of	enters in a strong perp	pendicular magnetic	field. Then its kinetic
	energy		N/O	
	1) Increases			
	2) Decreases		100	
	3) Remains constant	X		
	4) First increases and t	then becomes constant		
22.	A cyclotron can accel	lerate		
	1) β - particles	(6)		
	2) α - particles			
	3) High velocity gamn	na rays		
	4) High velocity X – ra	ays		
23.	$\mathbf{A} \ \alpha$ - particle and a	deuteron projected w	ith equal kinetic ene	rgies describe circular
	paths of radii r_1 and	r_2 respectively in a unif	orm magnetic field. T	The ratio r_1/r_2 is
	1) 1	2) 2	3) $\frac{1}{\sqrt{2}}$	4) $\sqrt{2}$
24.	When a positively of	charged particle enter	s a uniform magnet	ic field with uniform
	velocity, its trajectory	y can be		
	i) A Straight Line	ii) A Circle	iii) A Helix	
	1) i only		2) i or ii	
	3) i or ii		4) any one of i, ii and	iii
			C	

25.	Proton and α - partic	cle are projected perpo	endicularly in a magne	tic field, if both move
	in a circular path with	h same speed. Then the	e ratio of their radii is	
	1) 1: 2	2) 2: 1	3) 1: 4	4) 1: 1
2008				
26.	A particle mass m, ch	arge Q and kinetic end	ergy T enters a transve	erse uniform magnetic
	field of induction B. A	After 3s the kinetic ener	rgy of the particle will	be
	1) 3T	2) 2T	3) T	4) 4T
27.	A proton, a deuteron	and an α - particle w	ith the same kinetic en	ergy enter a region of
	uniform magnetic fie	ld, moving at right ar	ngles to B. What is the	e ratio of the radii of
	their circular paths?			•
	1) $1:\sqrt{2}:1$	2) $1:\sqrt{2}:\sqrt{2}$	3) $\sqrt{2}:1:1$	4) $\sqrt{2}:\sqrt{2}:1$
28.	Frequency of cyclotro	on does not depend upo	on	
	1) Charge	2) Mass	3) Velocity	4) $\frac{q}{m}$
	1, cg.			m
		A	7 .	
29.		7. (7)	field a charged particle	e is moving in a circle
		tant speed v. The time		
	1) Depends on v and no	A 1 3	2) Depends on both R	and v
	3) Is independent of bo	oth R and v	4) Depends on R and a	not on v
30.	Which of the followin		not be deflected by mag	gnetic field?
	1) Protons	2) Cathode rays	3) Alpha particles	4) Neutrons
31.	A proton is moving i	in a magnetic field B	is a circular path of ra	adius a in a direction
		J	B exists. Calculate the	e angular momentum,
	if the radius is a char	ge on proton is e		
	1) $\frac{Be}{a^2}$	$2) eB^2a$	3) a^2eB	4) <i>aeB</i>
32.	The magnetic force or	n a charged particle m	oving in the field does	no work, because
	1) Kinetic Energy of th	ne charged particle does	not change.	
	2) The charge of the pa	article remains same.		
	3) The magnetic force	is parallel to velocity of	the particle.	
	4) The magnetic force	is parallel to magnetic f	^{ield.} cation com	

33.

	1) $\frac{qvR}{2}$	$2) qvR^2$	$3) \frac{qvR^2}{2}$	4) <i>qvR</i>
34.	The path of an electro	on in a uniform magne	tic field may be	
	1) Circular but not heli	cal	2) Helical but not circu	lar
	3) Neither circular nor	circular	4) Either helical or circ	eular
35.	The figure shows the	ree situations when an	electron with velocity	v travels through a
	uniform magnetic fie	ld B. In each case, wh	at is the direction of n	nagnetic force on the
	electron?			•
	1) +ve z – axis, -ve x –	axis, +ve y – $axis$	2) –ve z – axis, -ve x –	axis and zero
	3) +ve z – axis, +ve y -	- axis and zero	4) $-$ ve z $-$ axis, $+$ ve x $-$	- axis and zero
36.	A beam of protons w	ith velocity $4 \times 10^5 ms^{-1}$	enters a magnetic fiel	d of 0.3T at an angle
	of 60° to the magne	tic field. Find the radi	ius of the helical path	taken by the proton
	beam	. 0		
	1) 0.2 cm	2) 1.2 cm	3) 2.2 cm	4) 0.122 cm
37.	A charged particle n	noves through a magn	etic field in a direction	perpendicular to it.
	Then the			
	1) Acceleration remain	s unchanged		
	2) Velocity remains un	changed		
	3) Speed of the particle	e remains unchanged		
	4) Direction of the part	icle remains unchanged		
38.	An electron is travelli	ng along the x – direct	ion. It encounters a ma	gnetic field in the y –
	direction. Its subsequ	ent motion will be		
	1) Straight line along the	he x – direction	2) A circle in the xz – p	olane
	3) A circle in the $yz - y$	plane	4) A circle in xy – plan	e
39.	An electron and prot	on enter a magnetic fie	eld perpendicularly. Bo	th have same kinetic
	energy. Which of the	following is true?		
	1) Trajectory of electro	on is less curved	2) Trajectory of proton	is less curved
	3) Both trajectories are	equally curved www.sakshiedu	4).Both move on straig cation.com	ht line path

A charged particle (charge q) is moving in a circle of radius R with uniform speed v.

The associated magnetic moment $\,\mu\,$ is given by

40.

	3) Angle between	v and B can have any v	alue other than zero and	180°
	4) Angle between	v and B is either zero or	r 180°	
41.	When deuterium	and helium are subject	eted to an accelerating	field simultaneously then
	1) Both acquire sa	me energy		CO.
	2) Deuterium acce	lerates faster		~ •
	3) Helium accelera	ates faster		
	4) Neither of them	is accelerated	XIIC	
42.	An electron revol	ves in a circle of radiu	as $0.4\overset{o}{A}$ with a speed of	of $10^5 ms^{-1}$. The magnitude
	of the magnetic f	ield, produced at the	centre of the circular	path due to the motion of
	the electron, in W	· -		•
	1) 0.01	2) 10	3) 1	
	4) 0.005	5) 5		
43.	A plane metallic	sheet is placed with its	s face parallel to lines o	of magnetic induction B of
	a uniform field. A	A particle of mass m a	nd charge q is projecte	ed with a velocity v from a
				·
	distance d from t	he plane normal to the	e lines of induction. Th	en, the maximum velocity
		he plane normal to the which the particle does		
44.	of projection for $\frac{2Bqd}{m}$	which the particle does $2) \frac{Bqd}{m}$	s not hit the plate is $3) \frac{Bqd}{2m}$	
44.	of projection for $\frac{2Bqd}{m}$ An electron move	which the particle does $2) \frac{Bqd}{m}$ res at right angle to a	s not hit the plate is $3) \frac{Bqd}{2m}$ a magnetic field of 1.	ten, the maximum velocity $4) \frac{Bqm}{d}$
44.	of projection for $\frac{2Bqd}{m}$ An electron move	which the particle does $2) \frac{Bqd}{m}$ res at right angle to a ne specific charge of the s	s not hit the plate is $3) \frac{Bqd}{2m}$ a magnetic field of 1.	ten, the maximum velocity $4) \frac{Bqm}{d}$ $5 \times 10^{-2} T \text{ with a speed of}$
44.	of projection for $\frac{2Bqd}{m}$ An electron move $6 \times 10^7 ms^{-1}$. If the	which the particle does $2) \frac{Bqd}{m}$ res at right angle to a ne specific charge of the s	s not hit the plate is $3) \frac{Bqd}{2m}$ a magnetic field of 1.	ten, the maximum velocity $4) \frac{Bqm}{d}$ $5 \times 10^{-2} T \text{ with a speed of}$
44. 45.	of projection for $\frac{2Bqd}{m}$ An electron move $6 \times 10^7 ms^{-1}$. If the circular path will 1) 2.9 cm	which the particle does $2) \frac{Bqd}{m}$ The sat right angle to a specific charge of the between 2) 3.9 cm	s not hit the plate is $3) \frac{Bqd}{2m}$ a magnetic field of 1 the electron is 1.7×10^{1} $3) 2.35 \text{ cm}$	ten, the maximum velocity $4) \frac{Bqm}{d}$ $5 \times 10^{-2}T \text{ with a speed of } C kg^{-1}, \text{ the radius of the } C$
	of projection for $\frac{2Bqd}{m}$ An electron move $6 \times 10^7 ms^{-1}$. If the circular path will 1) 2.9 cm	which the particle does $2) \frac{Bqd}{m}$ The sat right angle to a specific charge of the between 2) 3.9 cm	s not hit the plate is $3) \frac{Bqd}{2m}$ a magnetic field of 1 the electron is 1.7×10^{1} $3) 2.35 \text{ cm}$	ten, the maximum velocity $4) \frac{Bqm}{d}$ $5 \times 10^{-2}T \text{ with a speed of } C kg^{-1}, \text{ the radius of the}$ $4) 2 \text{ cm}$
	of projection for $\frac{2Bqd}{m}$ An electron move $6 \times 10^7 ms^{-1}$. If the circular path will $1) 2.9 \mathrm{cm}$ If velocity of a characteristic of $\frac{1}{2} \frac{1}{2} $	which the particle does $2) \frac{Bqd}{m}$ The sat right angle to a see specific charge of the	s not hit the plate is $3) \frac{Bqd}{2m}$ a magnetic field of 1 the electron is 1.7×10^{1} $3) 2.35 \text{ cm}$	ten, the maximum velocity $4) \frac{Bqm}{d}$ $5 \times 10^{-2}T \text{ with a speed of } ^{1}C kg^{-1}, \text{ the radius of the}$ $4) 2 \text{ cm}$

When a charged particle moving with velocity v is subjected to a magnetic field of

induction B, the force on it is non – zero. This implies that

2) Angle between v and B can have any value other than $\,90^{\circ}$

1) Angle between v and B is necessarily 90°

	to	it. Iı	n the	mag	neti	c field	l a cl	hange	e co	uld oc	cui	r in its								
	1)) Kine	etic I	Energy	y	2).	Ang	ular N	Mon	nentun	1 3) Linea	ır M	Iomen	tum	4) \$	Spee	ed		
2005	5																			
47.	C	yclot	ron	is a de	evic	e whic	ch is	used	to											
	1)) Mea	sure	the cl	narg	ge.					2) Meas	ure	the vo	ltag	e				
	3)) Acce	elera	te pro	tons	S					4) Acce	lera	te elec	tron	s		\wedge		
48.	Iı	n a cy	clot	ron, i	fa	deuter	on (can g	ain	energ	y o	of 40 M	IeV	, then	a p	roton	car	ı gain	ener	gy
	o	f																•		
	1)) 40 N	1eV			2)	80 N	1eV			3) 20 M	eV			4) 6	50 N	1eV		
49.	A	n ele	ctro	n, mo	ovin	g in a	a un	iforn	n m	agnet	ic	field o	f ir	ıducti	on (f int	ensi	ty B,	has	its
	ra	adius	dire	ectly p	rop	ortio	nal t	0					X							
	1)) Its C	Charg	ge		2)	Mag	netic	Fiel	ld	3) Speed	d	•		4) 1	Non	e of th	ese	
50.	A	n ele	ctro	n pro	ject	ed in	a pe	rpen	dicu	ılar u	nifo	orm m	agn	etic fi	eld	of 3×	(10	^{-3}T , m	oves	in
	a	circle	e of 1	radius	s 4n	nm. T	he li	near	moi	mentu	m	of elec	troi	n (in <i>k</i>	$g-\eta$	ns^{-1})	is			
	1) 1.92	×10	-21		2)	1.2×	×10 ⁻²²	4		3) 1.92	×10	-24		4) 1	1.2×	<10 ⁻²¹		
	2) 11/2/10																			
	Motion of a charged particle in a magnetic field																			
				1	7					Key										
1)	b	2)	a	3)	b	4)	c	5)	b	6)	c	7)	a	8)	c	9)	d	10)	d	
11)	d	12)	b	13)	a	14)	a	15)	d	16)	b	17)	b	18)	a	19)	a	20)	b	
21)	c	22)	b	23)	c	24)	d	25)	c	26)	c	27)	a	28)	c	29)	c	30)	a	
31)	c	32)	a	33)	a	34)	d	35)	d	36)	b	37)	c	38)	d	39)	a	40)	b	
41)	d	42)	c	43)	b		с /\//\/	45) (sak	c csh	46) viedu	c Ca	47) tion (c cor	48)	b	49)	c	50)	c	

A charged particle enters a uniform magnetic field with a certain speed at right angles

Solutions

1.
$$E = E_i - E_f$$

$$-2E + x = 2E$$

$$x = 4E$$

$$x = -4E$$

$$2, r = \frac{\sqrt{2mqV}}{qB} = \sqrt{\frac{2mV}{aB^2}}$$

$$\frac{r_1}{r_2} = \sqrt{\frac{m_1}{m_2}}$$

$$\frac{m_1}{m_2} = \frac{r_1^2}{r_2^2}$$

Hence,
$$\frac{m_1}{m_2} = \frac{(2)^2}{(3)^2} = \frac{4}{9}$$

The emf induced between the centre and the metallic ring = $\frac{1}{2}BR^2\omega$ 3.

5.
$$\theta = 23^{\circ}$$
, $B = 2.6 mT = 2.6 \times 10^{-6} T$ and $F = 6.5 \times 10^{-17} N$

But,
$$F = qvB\sin\theta$$

$$6.5 \times 10^{-17} = 1.6 \times 10^{-19} \times v \times 2.6 \times 10^{-6} \times \sin 23^{\circ}$$

$$6.5 \times 10^{-17} = 1.6 \times 10^{-19} \times v \times 2.6 \times 10^{-6} \times \sin 23^{\circ}$$

$$v = \frac{6.5 \times 10^{-17}}{2.6 \times 10^{-6} \times 1.6 \times 10^{-19} \times 0.39}$$

$$v = 4 \times 10^5 \, ms^{-1}$$

6.
$$r = \frac{mv}{qB}$$
 or

$$B = \frac{mv}{qr} = \frac{9.1 \times 10^{-31} \times 1.3 \times 10^{6}}{1/6 \times 10^{-19} \times 0.35} = 2.1 \times 10^{-5} T$$

8.
$$qvB = \frac{mv^2}{r}$$

$$r = \frac{mv}{Bq} = \frac{2mE}{qB}$$

$$r = \frac{\sqrt{2mE}}{Bq} = \frac{\sqrt{2m_1E_1}}{Bq}$$

$$r = \frac{mv}{Bq} = \frac{2mE}{qB}$$

$$r = \frac{\sqrt{2mE}}{Bq} = \frac{\sqrt{2m_1E_1}}{Bq}$$
or
$$E_1 = \frac{mE}{m_1} = \frac{(2m_1)}{m_1} \times 50 \, \text{keV} \quad [\because m = 2m_1] = 100 \, \text{keV}$$
11.
$$Bqv = \frac{mv^2}{r} \Rightarrow r = \frac{mv}{Bq}$$

$$\therefore \frac{r_1}{r_2} = \frac{v_1}{v_2} \times \frac{B_2}{B_1}$$

$$\frac{r_1}{r_2} = \frac{1}{2} \times \frac{1}{2}$$

$$r_2 = 4r_1 \Rightarrow r_2 = 4r$$
13.
$$qE = qvB$$

$$v = \frac{E}{B} = \frac{15000}{0.40}$$

$$= 3750 \, \text{ms}^{-1}$$

11.
$$Bqv = \frac{mv^2}{r} \Rightarrow r = \frac{mv}{Bq}$$

$$\therefore \frac{r_1}{r_2} = \frac{v_1}{v_2} \times \frac{B_2}{B_1}$$

$$\frac{r_1}{r_2} = \frac{1}{2} \times \frac{1}{2}$$

$$r_2 = 4r_1 \Rightarrow r_2 = 4r$$

13.
$$qE = qvE$$

$$v = \frac{E}{B} = \frac{1500}{0.40}$$

$$= 3750 \, ms^{-1}$$

$$v = 3.75 \times 10^{-3} ms^{-1}$$

14.
$$r_a = \frac{m_a v_a}{aB}$$

And
$$r_b = \frac{m_b v_b}{qB}$$

But,
$$r_a > r_b$$

$$\therefore \frac{m_a v_a}{qB} > \frac{m_b v_b}{qB}$$

or
$$m_a v_a > m_b v_b$$

16.
$$F = qvB\sin\theta$$

$$\therefore \frac{a}{qB} > \frac{b}{qB}$$
or $m_a v_a > m_b v_b$

$$F = qvB\sin\theta$$

$$\therefore F = (1.6 \times 10^{-19}) \times (2 \times 10^7) \times 1.5\sin 30^\circ$$

$$F = 1.6 \times 10^{-12} \times 2 \times 1.5 \times \frac{1}{2}$$

$$F = 2.4 \times 10^{-2} N$$

$$qvB = \frac{mv^2}{r}$$

$$r = \frac{mv}{qB} = \sqrt{\frac{2mE}{q^2B^2}}$$

$$F = 1.6 \times 10^{-12} \times 2 \times 1.5 \times \frac{1}{2}$$

$$F = 2.4 \times 10^{-2} N$$

$$27. qvB = \frac{mv^2}{r}$$

$$r = \frac{mv}{qB} = \sqrt{\frac{2mE}{q^2B^2}}$$

Here, E = kinetic energy of the particle

$$r_p = \sqrt{\frac{2mE}{e^2B^2}}$$

$$r_d = \sqrt{\frac{2 \times 2m \times E}{e^2 B^2}}$$

and
$$r_a = \sqrt{\frac{2 \times 4m \times E}{(2e)^2 B^2}}$$

$$r_p: r_d: r_a = 1: \sqrt{2}: 1$$

$$29. \qquad \frac{mv^2}{R} = Bc$$

29.
$$\frac{mv^2}{R} = Bqv \quad \text{or} \quad R = \frac{mv}{Bq}$$

$$T = \frac{2\pi R}{v}$$

$$= \frac{2\pi \left(\frac{mv}{Bq}\right)}{v} \quad \text{or} \quad T = \frac{2\pi m}{Bq}$$

It is independent of both R and v.

Under uniform magnetic field, force evB acts on proton and provides the necessary 31. centripetal force mv^2/a

$$\therefore \frac{mv^2}{a} = evB$$

or
$$c = \frac{aeB}{m}$$
(i)

Angular momentum

$$J = r \times p$$

Here
$$J = a \times mv$$

$$\therefore J = a \times m \left(\frac{qeB}{m} \right) = a^2 eB$$

33.
$$I = qf = q \times \frac{\omega}{2\pi}$$

But
$$\omega = \frac{v}{R}$$

where R is radius of circle and v is uniform speed of charged particle

Therefore,
$$I = \frac{qv}{2\pi R}$$

Now,
$$\mu = IA = I \times \pi R^2$$

or
$$\mu = \frac{qv}{2\pi R} \times \pi R^2 = \frac{1}{2}qvR$$

36. Radius of the helical path
$$r = \frac{m(v \sin \theta)}{qB}$$

Here
$$m = 1.67 \times 10^{-27} kg$$

$$v = 4 \times 10^5 \, ms^{-1}$$

$$\theta = 60^{\circ}$$

$$q = 1.6 \times 10^{-19} C$$

$$B = 0.3T$$

$$r = \frac{1.67 \times 10^{-27} \times 4 \times 10^5 \times (\sqrt{3}/2)}{1.6 \times 10^{-19} \times 0.3} = 1.2 \text{ cm}$$

$$v \times B$$

$$v = v_x i \text{ and } B - B_y j$$

38.
$$F = qv \times B$$

Here
$$v = v_x i$$
 and $B - = B_y j$

$$\therefore R = ev_x B_y (i \times j) = ev_x B_y k$$

Hence, subsequent motion of the charged particle will be a circle in the xy - plane.

$$39. qvB = \frac{mv^2}{r}$$

$$\therefore r = \frac{mv}{qB}$$
 (i)

Now kinetic energy of the particle

$$K = \frac{1}{2}mv^2 \Rightarrow mv = \sqrt{2mK}$$

Therefore, Equation (i) becomes

$$r = \frac{\sqrt{2mK}}{qB}$$
 or $r \propto \sqrt{m}$

$$\therefore \frac{r_e}{r_p} = \sqrt{\frac{m_e}{m_p}}$$

As
$$m_e < m_p$$
, so $r_e < r_p$

Hence, trajectory of electron is less curved.

40.
$$F = qvB\sin\theta$$

If
$$\theta = 90^{\circ}$$
 or 180° , then $\sin \theta = 0$

$$\therefore R = qvB\sin\theta = 0$$

Since, force on charged particle is non – zero, so angle between v and B can have any value other than zero and 180° .

$$42. \qquad B = \frac{\mu_o}{4\pi} \frac{qv}{r^2}$$

$$\frac{\mu_o}{4\pi} = 10^{-7}, \ q = 1.6 \times 10^{-19} C$$

$$v = 10^5 \, ms^{-1}$$

$$r = 0.4 \stackrel{o}{A} = 0.4 \times 10^{-10} m$$

$$\therefore B = 10^{-7} \times \frac{1.6 \times 10^{-19} \times 10^5}{\left(0.4 \times 10^{-10}\right)^2} = 1Wb \, m^{-2}$$

43.
$$\therefore Bqv\sin\frac{\pi}{2} = \frac{mv^2}{r}$$

$$\Rightarrow r = \frac{mv}{Ba}$$

The particle does not hit the plate if

$$r \le d$$

or
$$\frac{mv}{Bq} \le d$$

or
$$v \le \frac{Bqd}{m}$$

$$\therefore v_{\text{max}} = \frac{Bqd}{m}$$

44.
$$r = \frac{mv}{eB} = \frac{v}{\left(\frac{e}{m}\right)B}$$
(i)

$$\therefore r = \frac{6 \times 10^7}{1.7 \times 10^{11} \times 1.5 \times 10^{-2}} = 2.35 \text{ cm}$$

$$45. qvB = \frac{mv^2}{r}$$

$$\Rightarrow r = \frac{mv}{qB}$$

$$\therefore r^1 = \frac{m \times 2v}{q \times \frac{B}{2}} = 4r$$

46.
$$F = qv \times B$$
(i)

and centripetal force

$$F = \frac{mv^2}{r} \dots (ii)$$

$$F = \frac{mv^2}{r}$$
(ii)

From Eqs. (i) and (ii), $B = \frac{mv}{rq} = \frac{\text{linear momentum}}{\text{charge}}$

48.
$$F = qvB = \frac{mv^2}{r} = \text{centripetal force}$$

Maximum energy
$$E = \frac{1}{2} \frac{B^2 q^2 r^2}{m}$$

$$\frac{E_d}{E_p} = \left(\frac{q_d}{q_p}\right) \left(\frac{m_p}{m_d}\right)$$

$$\frac{40}{E_p} = \left(\frac{q}{q}\right)^2 \left(\frac{m}{2m}\right)$$

$$E_p = 80 MeV$$

49.
$$F = evB$$
(i)

The centripetal force is given by

$$F = \frac{mv^2}{r} \dots (ii)$$

Where, r is radius of circular path.

Equating Eq. (i) with Eq. (ii), we get

$$F = qvB = \frac{mv^2}{r}$$

$$\Rightarrow r = \frac{mv}{qB}$$

$$\Rightarrow r \propto 1$$

$$50. \qquad \frac{mv^2}{r} = evB$$

i.e.,
$$r = \frac{mv}{eB}$$

$$p = mv$$

$$\therefore r = \frac{mv}{eB} = \frac{p}{eB} \Rightarrow p = eBr$$

$$\therefore p = 1.6 \times 10^{-19} \times 3 \times 10^{-3} \times 4 \times 10^{-3} = 1.92 \times 10^{-24} kg - ms^{-1}$$

Force and Torque on a current carrying conductor

2011

1.	An electron is accelerated under a potential difference of 182V. The maximum velocity
	of electron will be (Charge of electron is $1.6 \times 10^{-19} C$ and its mass is $9.1 \times 10^{-31} kg$)

- 1) $5.65 \times 10^6 \text{ ms}^{-1}$ 2) $4 \times 10^6 \text{ ms}^{-1}$ 3) $8 \times 10^6 \text{ ms}^{-1}$ 4) $16 \times 10^{-6} \text{ ms}^{-1}$

2. Magnetic flux of $10\mu Wb$ is linked with a coil, when a current of 2mA flows through it. What is the self inductance of the coil?

- 1) 10 mH
- 2) 5 mH
- 3) 15 mH
- 4) 20 mH

Pick out the true statement from the following. **3.**

- 1) The direction of eddy current is given by Fleming's right hand rule.
- 2) A choke coil is a pure inductor used for controlling current in an AC circuit.
- 3) The energy stored in a conductor of capacitance C having a charge q is $\frac{1}{2}Cq^2$.
- 4) The magnetic energy stored in a coil of self inductance L carrying current I is $\frac{1}{2}LI^2$.
- 5) Induction coil is powerful equipment used for generating high voltages.

The torque required to hold a small circular coil of 10 turns, area $1 mm^2$. And carrying 4. a current of (21/44)A in the middle of a long solenoid of 10^3 turns m⁻¹ carrying a current of 2.5A, with its axis perpendicular to the axis of the solenoid is

1)
$$1.5 \times 10^{-6} N - m$$

1)
$$1.5 \times 10^{-6} N - m$$
 2) $1.5 \times 10^{-8} N - m$ 3) $1.5 \times 10^{+6} N - m$ 4) $1.5 \times 10^{+8} N - m$

3)
$$1.5 \times 10^{+6} N - m$$

4)
$$1.5 \times 10^{+8} N - n$$

2010

Magnetic field at the centre of a circular loop of area A is B. The magnetic moment of 5. the loop will be

1)
$$\frac{BA^2}{\mu_o \pi}$$

$$2) \frac{BA^{3/2}}{\mu_o \pi}$$

3)
$$\frac{BA^{3/2}}{\mu_o \pi^{1/2}}$$

4)
$$\frac{2BA^{3/2}}{\mu_o \pi^{1/2}}$$

3A of current is flowing in a linear conductor having a length of 40mc. The conductor is 6. placed in a magnetic field of strength 500 gauss and makes an angle of 30° with direction of the field. It experiences a force of magnitude

1)
$$3 \times 10^4 N$$

2)
$$3 \times 10^2 N$$

3)
$$3 \times 10^{-2} N$$

4)
$$3 \times 10^{-4} N$$

www.sakshieducation.com

	$1) \frac{\mu_o i^2}{b^2}$	$2) \frac{\mu_o i}{2\pi b^2}$		3) $\frac{\mu_o i}{2\pi b}$		$4) \; \frac{\mu_o i^2}{2\pi b}$	
8.	A coil in the shape of	f an equilate	ral triangl	e of side 0	.02m is susj	pended from it	s vertex
	such that it is hangin	g in a vertica	al plane be	tween the	pole pieces	of permanent	magnet
	producing a uniform	field of 5×1	$0^{-2}T$. If a	current o	of 0.1A is pa	ssed through	the coil,
	what is the couple ac	ting?					
	1) $5\sqrt{3} \times 10^{-7} N - m$	2) $5\sqrt{3} \times 10$	$^{-10}N-m$	3) $\frac{\sqrt{3}}{5} \times 1$	$10^{-7}N-m$	4) None of the	nese
9.	Assertion (A): Torqu	ie on the coi	l is the ma	aximum, v	when coil is	suspended in	a radial
	magnetic field.					•	
	Reason (R): The torq	ue tends to r	otate the c	oil on its o	wn axis.	•	
	1) Both A and R are co	orrect. R is the	e correct ex	planation	of A.		
	2) Both A and R are co	orrect. R is no	t the correc	t explanati	ion of A.		
	3) A is true, but R is fa	alse.		10			
	4) Both A and R are fa	ılse.					
10.	A square current ca	rrying loop	is suspend	ed in uni	form magne	etic field acting	g in the
	plane of the loop. If the force on one arm of the loop is F, the net force on the remaining						
	three arms of the loo	p is					
	1) 3F	2) – F		3) – 3F		4) F	
11.	A wire of length L is	bent in the f	orm of a c	ircular co	il and curre	nt i, is passed	through
	it. If this coil is placed in a magnetic field then the torque acting on the coil will be						
	maximum when the i	number of tu	rns is				
	1) As large as possible	2) Any num	ber	3) 2	4) 1	
12.	A coil of 100 turns	and area 2	$\times 10^{-2} m^2$	is pivoted	l about a v	vertical diamet	ter in a
	uniform magnetic fie	ld and carrie	es a curren	at of 5A. V	When the co	il is held with i	ts plane
	in north – south dire	ction, it expe	eriences a	couple of (0.33 Nm. W	hen the plane	is east –
	west, the correspond	ling couple is	s 0.4Nm, 1	he value	of magnetic	induction is	(Neglect
	earth's magnetic field	d)					
	1) 0.2 T	2) 0.3 T		3) 0.4 T		4) 0.05 T	
		www.sa	kshiedu	cation.c	om		

Two thin long parallel wires separated by a distance b are carrying a current i ampere

each. The magnitude of the force per unit length exerted by one wire on the other, is

13.	Two long straight wires are set parallel to each other at separation r and each carries a							
	current i in the same direction. The strength of the magnetic field at any point midway							
	between the two wires is							
	1) $\frac{\mu_o i}{\pi r}$	$2) \frac{2\mu_o i}{\pi r}$	3) $\frac{\mu_o i}{2\pi r}$	4) Zero				
14.	The ratio of magneti	c field and magnetic r	noment at the centre of	of a current carrying				
	circular loop is x. When both the current and radius is doubled the ratio will be							
	1) <i>x</i> /8	2) $x/4$	3) $x/2$	4) 2 <i>x</i>				
2009				~O,				
15.	In moving coil galvar	ometer, the magnetic f	ïeld used is	O				
	1) Non – uniform	2) Radial	3) Uniform	4) None of these				
16.	What is shape of mag	gnet in moving coil galv	anometer to make the	radial magnet field?				
	1) Concave	2) Horse shoe magnet	3) Convex	4) None of these				
17.	Calculate the current	which will produce a	deflection of 30° in a ta	angent galvanometer,				
	if its reduction factor	is 3A						
	1) 1.732 A	2) 0.732 A	3) 3.732 A	4) 2.732 A				
18.	A copper rod is suspe	ended in a non homoger	neous magnetic field re	gion. The rod when				
	in equilibrium with align itself							
	1) In the region where	magnetic field is stronge	est					
	2) In the region where	e magnetic field is weal	ker and parallel to direc	etion of magnetic field				
	there							
	3) In the direction in w	hich it was originally su	spended					
	4) In the region whe	ere magnetic field is w	eakest and perpendicul	ar to the direction of				
	magnetic field there							
19.	In a moving coil galva	anometer, to make the	field radial					
	1) Coil is wound on w	ooden frame						
	2) Magnetic poles are	cylindrically cut						
	3) A horse – shoe mag	net is used						
	4) The number of wind	dings in the coil is decrea	ased					

20.	A wire of length I carrying a current I A is bent into a circle. The magnitude of the						
magnetic moment is							
	$1) \frac{lI^2}{2\pi}$	$2) \frac{lI^2}{4\pi}$	$3) \frac{l^2I}{2\pi}$	$4) \; \frac{l^2 I}{4\pi}$			
21.	The magnetic dipole	e moment of current	loop i, independent of				
	1) Magnetic field in	which it is lying	2) Number of turn	S			
	3) Area of the loop		4) Current in the l	oop			
2008 22.	A straight wire of n	nass 200g and length	1.5m carries a curren	t of 2A. It is suspended in			
	mid – air by a	uniform horizontal	field B. The magni	tude of B (in tesla) is			
	(assume $g = 9.8 ms^{-2}$	2)					
	1) 2	2) 1.5	3) 0.55	4) 0.65			
23.	Two streams of pro	tons move parallel to	o each other in the sam	e direction. Then these			
	1) Do not interact at	all	100				
	2) Attract each other		χ_{0}				
	3) Repel each other						
	4) Get rotated to be p	perpendicular to each	other				
24.	Consider two strai	ght parallel conduc	tors A and B separat	ed by a distance x and			
	carrying individual currents I_A and I_B respectively. If the two conductors attract ϵ						
	other, it indicates th	nat C					
	1) The two currents a	are parallel in directio	n				
	2) The two currents a	are anti – parallel in d	irection				
	3) The magnetic line	s of induction are para	allel				
	4) The magnetic line	s of induction are para	allel to length of conduc	tors			
2007							
25.	_		_	eld of 2.5T normally. The			
	magnetic force on tl	he proton is (Take m	nass of proton to be 1.6>	$(10^{-27}kg)$			
	1) $3 \times 10^{-12} N$	2) $8 \times 10^{-10} N$	3) $8 \times 10^{-12} N$	4) $2 \times 10^{-10} N$			

26.	Currents of 10A	and 2A are passed thre	ough two parallel wire	es A and B respectively in						
	opposite directions. If the wire A is infinitely long and length of the wire B is 2m, the									
	force acting on the conductor B which is situated at 10cm distance from A will be									
	1) $5 \times 10^{-5} N$	2) $4\pi \times 10^{-7} N$	3) $8 \times 10^{-5} N$	4) $8\pi \times 10^{-7} N$						
27.	Two free parallel	l wires carrying current	ts in the opposite direc	tions						
	1) Attract each oth	ner								
	2) Repel each other									
	3) Do not affect ea	3) Do not affect each other								
	4) Get rotated to b	pe perpendicular to each o	other							
				CO.						
2006				~ •						
28.	A conducting cir	rcular loop of radius r	carries a constant cu	irrent I. It is placed in a						
	uniform magneti	ic field B_o such that B_o	, is perpendicular to t	the plane of the loop. The						
	magnetic force a	cting on the loop is								
	1) IrB_o	2) $2\pi IrB_o$	3) πIrB_o	4) Zero						
29.	A proton moving	g vertically downward	enters a magnetic field	d pointing towards north.						
	In which direction	on proton will deflect?								
	1) East	2) West	3) North	4) South						
30.	Graph of force p	oer unit length between	two long parallel cui	rents carrying conductor						
	and the distance	between them is								
	1) Straight Line	600	2) Parabola							
	3) Ellipse		4) Rectangular Hy	4) Rectangular Hyperbola						
		•								
2005	100									
31.	A coil in the sha	ipe of an equilateral tr	iangle of side l is sus	spended between the pole						
	pieces of a perma	anent magnet such that	B is in plane of the co	oil. If due to a current i in						
	the triangle a tor	eque $ au$ acts on it, the sid	e l of the triangle is							
	$1) \frac{2}{\sqrt{3}} \left(\frac{\tau}{Bi}\right)^{1/2}$	$2) \; \frac{2}{\sqrt{3}} \left(\frac{\tau}{Bi} \right)$	$3) \ 2\left(\frac{\tau}{\sqrt{3}Bi}\right)^{1/2}$	4) $\frac{1}{\sqrt{3}} \frac{\tau}{Bi}$						

32. Two parallel wires carrying currents in the same direction attract each other because of

- 1) Potential Difference between them
- 2) Mutual Inductance between them
- 3) Electric Force between www.sakshieducation ago om Force between them

33. The force on a conductor of length l placed in a magnetic field of magnitude B and carrying a current i is given by (θ is the angle, the conductor makes with the direction of B)

1)
$$F = ilB \sin \theta$$

$$2) F = i^2 l B^2 \sin \theta$$

3)
$$F = ilB\cos\theta$$

1)
$$F = ilB\sin\theta$$
 2) $F = i^2lB^2\sin\theta$ 3) $F = ilB\cos\theta$ 4) $F = \frac{i^2l}{B}\sin\theta$

Force and Torque on a current carrying conductor

Solutions

$$1. \qquad \frac{1}{2}mv^2 = eV$$

$$\frac{1}{2} \times 9 \times 10^{-31} \times v^2 = 1.6 \times 10^{-19} \times 182$$

$$v^2 = \frac{1.6 \times 10^{-19} \times 182 \times 2}{9.1 \times 10^{-31}} = 64 \times 10^{12}$$

$$v = 8 \times 10^6 \, ms^{-1}$$

2.
$$\phi = Li$$

$$L = \frac{\phi}{i} = \frac{10 \times 10^{-6}}{2 \times 10^{-3}} = 5 \times 10^{-3} = 5 \, mH$$

3. Energy =
$$\frac{1}{2} \frac{q^2}{C}$$

4. We have
$$M = NIA$$

$$B = \mu_o nI$$

Torque, C = MB

Here,
$$C = (n_1 I_1 A) (\mu_o n_1 I_2)$$

$$= \left(10 \times \frac{21}{44} \times 10^{-6}\right) \left(4 \times \frac{22}{7} \times 10^{-7} \times 10^{3}_{t2.5}\right) = 1.5 \times 10^{-8} N - m$$

5.
$$B = \frac{\mu_o}{4\pi} \frac{2\pi I}{r} = \frac{\mu_o I}{2r}$$

$$I = \frac{2Br}{\mu_o}$$

Also,
$$A = \pi r^2$$
 or $r = \left(\frac{A}{\pi}\right)^{1/2}$

Magnetic moment,
$$M = IA = \frac{2Br}{\mu_o} A = \frac{2BA}{\mu_o} \times \left(\frac{A}{\pi}\right)^{1/2} = \frac{2BA^{3/2}}{\mu_o \pi^{1/2}}$$

6.
$$F = Bil \sin \theta$$

$$= 500 \times 10^{-4} \times 3 \times (40 \times 10^{-2}) \times \frac{1}{2}$$

$$= 3 \times 10^{-2} N$$

7. The magnitude of magnetic field B at any point on Y due to current i_1 in X is given by

$$B = \frac{\mu_o}{2\pi} \frac{i_1}{b}$$

$$F = i_2 B l = i_2 \left(\frac{\mu_o}{2\pi} \frac{i_1}{h} \right) l$$

Force per unit length is

$$\frac{F}{l} = \frac{\mu_o}{2\pi} \frac{i_1 i_2}{b}$$

Given, $i_1 = i_2 = i$, therefore,

$$\frac{F}{l} = \frac{\mu_o}{2\pi} \frac{i^2}{b}$$

8. Torque
$$\tau = iAB \sin \theta$$
, $i = 0.1A$, $\theta = 90^{\circ}$

$$A = \frac{1}{2} \times \text{base} \times \text{height}$$

or
$$A = \frac{1}{2}a \times \frac{a\sqrt{3}}{2}$$

$$=\frac{\sqrt{3}a^2}{4} = \frac{\sqrt{3} \times (0.02)^2}{4}$$

$$=\sqrt{3}\times10^{-4}m^2$$
; $\theta=90^{\circ}$

× base × height
$$A = \frac{1}{2}a \times \frac{a\sqrt{3}}{2}$$

$$= \frac{\sqrt{3}a^2}{4} = \frac{\sqrt{3} \times (0.02)^2}{4}$$

$$= \sqrt{3} \times 10^{-4} m^2 \; ; \; \theta = 90^{\circ}$$

$$\tau = 0.1 \times \sqrt{3} \times 10^{-4} \times 5 \times 10^{-2} \sin 90^{\circ}$$

$$=5\sqrt{3}\times10^{-7}N-m$$

11.
$$au_{\text{max}} = MB$$

or
$$au_{\text{max}} = ni\pi r^2 B$$

Let number of turns in length l is n so $l = n(2\pi r)$

or
$$r = \frac{1}{2\pi n}$$

$$\Rightarrow \tau_{\text{max}} = \frac{ni\pi B l^2}{4\pi^2 n^2} = \frac{l^2 i B}{4\pi n_{\text{min}}}$$

$$\Rightarrow \tau_{\text{max}} \propto \frac{1}{n_{\text{min}}}$$

$$\Rightarrow n_{\min} = 1$$

N, B, i and A are constants

$$\therefore \sin \theta \propto 0.3$$

$$\cos\theta \propto 0.4$$

$$\tan \theta = \frac{3}{4}$$
 and $\sin \theta = \frac{3}{5}$

$$B = \frac{\tau}{NiA\sin\theta}$$

$$B = \frac{0.3 \times 5}{100 \times 5 \times 2 \times 10^{-2} \times 3} = 0.05T$$

13.
$$B_1 = \frac{\mu_o i}{2\pi \left(\frac{r}{2}\right)}$$

$$B_2 = \frac{\mu_o i}{2\pi \left(\frac{r}{2}\right)}$$

So,
$$B_{\text{net}} = 0$$

14.
$$B = \frac{\mu_o}{4\pi} \left(\frac{2\pi i}{a} \right) = \frac{\mu_o i}{2a}$$

$$M = i\left(\pi a^2\right)$$

$$\therefore \frac{B}{M} = \frac{\mu_o i}{2a} \times \frac{1}{i\pi a^2} = \frac{\mu_o}{2\pi a^3} = x \text{ (given)}$$

When both the current and the radius are doubled, the ratio becomes

$$\frac{\mu_o}{2\pi(2a)^3} = \frac{\mu_o}{8(2\pi a^3)} = \frac{x}{8}$$

Area =
$$\pi r^2 = \frac{l^2}{4\pi}$$

Magnetic moment =
$$IA = \frac{Il^2}{4\pi}$$

22. Magnetic force on straight wire

$$F = BIl \sin \theta = BIl \sin 90^\circ = BIl$$

For equilibrium of wire in mid – air

$$F = mg$$

$$BIl = mg$$

$$\therefore B = \frac{mg}{ll} = \frac{200 \times 10^{-3} \times 9.8}{2 \times 1.5} = 0.65T$$

Energy of proton = 2MeV25.

$$= 2 \times 1.6 \times 10^{-19} \times 10^{6}$$

$$= 3.2 \times 10^{-13} J$$

= $2 \times 1.6 \times 10^{-19} \times 10^{6} J$ = $3.2 \times 10^{-13} J$ Magnetic field (B) = 2.5 T

Mass of proton $(m) = 1.6 \times 10^{-27} kg$ Energy of proton $E = \frac{1}{2} mv^2$ $\therefore v = \sqrt{\frac{2E}{m}}$ (i)

$$\therefore v = \sqrt{\frac{2E}{m}} \quad \dots \quad \text{(i)}$$

Magnetic force on proton

$$F = Bqv \sin 90^\circ = Bqv$$

$$\therefore F = Bq\sqrt{\frac{2E}{m}} = 2.5 \times 1.6 \times 10^{-19} \sqrt{\frac{2 \times 3.2 \times 10^{-13}}{1.6 \times 10^{-27}}} = 8 \times 10^{-12} N$$

www.sakshieducation.com

26.
$$F = \frac{\mu_o}{4\pi} \cdot \frac{2I_1I_2}{r}l$$

$$I_1 = 10A$$
, $I_2 = 2A$, $l = 2m$

$$R = 10 \text{ cm} = 0.1 \text{ m}$$

$$\therefore F = 10^{-7} \times \frac{2 \times 10 \times 2 \times 2}{0.1} = 8 \times 10^{-5} N$$

www.sakshieducation.com