## Electromagnetism

## Biot - Savart's Law and Ampere's Circuital Law

2011

1. In the given circuit for ideal diode, the current through the battery is
1) 0.5 A
2) 1.5 A
3) 1.0 A
4) 2 A
5) 2.5 A
2. The statement "Polarity of induced emf is such that it tends to produce a current which opposes the change in magnetic flux that produced it" is known as
1) Faraday's law
2) Gauss's law
3) Coulomb's law
4) Lenz's law

2010
3. A wire carrying current $I$ and other carrying $2 i$ in the same direction produce a magnetic field $B$ at the mid - point. What will be the field when $2 i$ current is switched off?

1) $B / 2$
2) 2 B
3) $B$
4) 4 B
4. The distance at which the magnetic field on axis as compared to the magnetic field at the centre of the coil carrying current $I$ and radius $R$ is $1 / 8$, would be
1) $R$
2) $\sqrt{2} R$
3) $2 R$
4) $\sqrt{3} R$
5. The current in straight wire if the magnetic field $10^{-6} \mathrm{Wm}^{-2}$ produced at 0.02 m away from it is
1) 0.1 A
2) 1 A
3) Zero
4) 10 A
6. An electric current passes through a long straight copper wire. At a distance 5 cm from the straight wire, the magnetic field is $B$. The magnetic field at 20 cm from the straight wire would be
1) $\frac{B}{6}$
2) $\frac{B}{4}$
3) $\frac{B}{3}$
4) $\frac{B}{2}$
7. For the magnetic field to be maximum due to a small element of current carrying conductor at a point, the angle between the element and the line joining the element and the line joining the element to the given point must be
1) $0^{\circ}$
2) $90^{\circ}$
3) $180^{\circ}$
4) $45^{\circ}$
8. A solenoid of 1.5 m length and 4.0 cm diameter possesses 10 turns $/ \mathrm{cm}$. A current of 5 A is flowing through it. The magnetic induction at axis inside the solenoid is
1) $2 \pi \times 10^{-3} \mathrm{~T}$
2) $2 \pi \times 10^{-5} \mathrm{~T}$
3) $2 \pi \times 10^{-3} G$
4) $2 \pi \times 10^{-5} G$
9. A square conducting loops of side length $L$ carries a current $I$. The magnetic field at the centre of the loop is
1) Independent of $L$
2) Proportional to $L^{2}$
3) Inversely proportional to $L$
4) Linearly proportional to $L$
10. A solenoid of length 50 cm and a radius of cross - section 1 cm has 1000 turns of wire wound over it. If the current carried is 5 A , the magnetic field on its axis, near the centre of the solenoid is approximately (permeability of free space $\mu_{o}=4 \pi \times 10^{-7} T-m A^{-1}$ )
1) $0.63 \times 10^{-2} \mathrm{~T}$
2) $1.26 \times 10^{-2} \mathrm{~T}$
3) $251 \times 10^{-2} \mathrm{~T}$
4) 6.3 T
11. Mark the correct statement
1) For long parallel conductors carrying steady current, the Biot - Savart law and Lorentz force yield results in accordance with Newton's third law.
2) For long parallel conductors carrying steady current, the Biot - Savart law and Lorentz force, Newton's third law does not hold good.
3) For long parallel conductors carrying time varying currents, the Biot - Savart law and Lorentz force, Newton's third law holds good.
4) Both (a) and (c) are correct.
12. A helium nucleus makes full rotation in a circle of radius 0.8 m in 2 s . The value of magnetic field $B$ at the centre of the circle, will be ( $\mu_{o}=$ permeability constant)
1) $\frac{2 \times 10^{-19}}{\mu_{0}}$
2) $2 \times 10^{-19} \mu_{o}$
3) $10^{-19} \mu_{o}$
4) $\frac{10^{-19}}{\mu_{o}}$
13. A winding wire which is used to frame a solenoid can bear a maximum 10A current. If length of solenoid is 80 cm and its cross - sectional radius is 3 cm then required length of winding wire is
( $\mathrm{B}=0.2 \mathrm{~T}$ )
1) $1.2 \times 10^{2} \mathrm{~m}$
2) $4.8 \times 10^{2} \mathrm{~m}$
3) $2.4 \times 10^{3} \mathrm{~m}$
4) $6 \times 10^{3} \mathrm{~m}$
14. Assertion (A): A proton and an alpha particle having the same kinetic energy are moving in circular paths in a uniform magnetic field. The radii of their circular paths will be equal.

Reason (R): Any two charged particles having equal kinetic energies and entering a region of uniform magnetic field $B$ in a direction perpendicular to $B$, will describe circular trajectories of equal radii.

1) Both $A$ and $R$ are correct. $R$ is the correct explanation of $A$.
2) Both A and R are correct. R is not the correct explanation of A.
3) A is true, but $R$ is false.
4) Both $A$ and $R$ are false.
15. An electric current passes through a long straight wire. At a distance 5 cm from the wire, the magnetic field is $B$. The field at 20 cm from the wire would be
1) $2 B$
2) $B / 4$
3) $B / 2$
4) $B$
16. A wire is wound in the form of a solenoid of length $l$ and distance $d$. When a strong current is passed through a solenoid, there is a tendency to
1) Increase $l$ but decrease $d$
2) Keep both $l$ and d constant
3) Decrease $l$ but increase $d$
4) Increase both $l$ and d
17. A closely wound flat circular coil of 25 turns wire diameter of 10 cm which carries current of 4A, the density at the centre of a coil will be
1) $2.28 \times 10^{-6} \mathrm{~T}$
2) $1.678 \times 10^{-6} \mathrm{~T}$
3) $1.256 \times 10^{-3} \mathrm{~T}$
4) $1.572 \times 10^{-5} \mathrm{~T}$
18. Two long straight wires are set parallel to each other. Each carries a current in the same direction and the separation between them is 2 r . The intensity of the magnetic field mid - way between them is
1) $\frac{\mu_{0} i}{r}$
2) $\frac{4 \mu_{o} i}{r}$
3) Zero
4) $\frac{\mu_{o} i}{4 r}$
19. Two concentric circular loops of radii $R$ and $2 R$ carry currents of $2 i$ and $I$ respectively in opposite sense (i.e, clockwise in one coil and counter - clockwise in the other coil). The resultant magnetic field at their common centre is
1) $\mu_{o} \frac{i}{4 R}$
2) $\mu_{o} \frac{5 i}{4 R}$
3) $\mu_{o} \frac{3 i}{4 R}$
4) $\mu_{o} \frac{i}{2 R}$
20. A charge $q$ coulomb makes $n$ revolutions in one second in a circular orbit of radius $r$. The magnetic field at the centre of the orbit in $N A^{-1} m^{-1}$ is
1) $\frac{2 \pi r n}{q} \times 10^{-7}$
2) $\left(\frac{2 \pi q}{r}\right) \times 10^{-7}$
3) $\left(\frac{2 \pi q}{n r}\right) \times 10^{-7}$
4) $\left(\frac{2 \pi \mathrm{n} q}{r}\right) \times 10^{-7}$
21. Magnetic field at the centre of a coil in the form of a square of side 2 m carrying a current of 4.414 A is
1) $8 \times 10^{-5} \mathrm{~T}$
2) $5 \times 10^{-5} \mathrm{~T}$
3) $1.5 \times 10^{-5} \mathrm{~T}$
4) $6 \times 10^{-5} \mathrm{~T}$
22. Which of the following relation represents Biot - Savart's law?
1) $d B=\frac{\mu_{o}}{4 \pi} \frac{d l \times r}{r}$
2) $d B=\frac{\mu_{o}}{4 \pi} \frac{d l \times r}{r^{2}}$
3) $d B=\frac{\mu_{o}}{4 \pi} \frac{d l \times r}{r^{3}}$
4) $d B=\frac{\mu_{o}}{4 \pi} \frac{d l \times r}{r^{4}}$
23. A long wire carries a steady current. It is bent into a circle of one turn and the magnetic field at the centre of the coil is $B$. It is then bent into a circular loop of $n$ turns. The magnetic field at the centre of the coil for same current will be
1) $n B$
2) $n^{2} B$
3) 2 nB
4) $2 n^{2} B$
24. The phenomena in which proton flips is
1) Nuclear magnetic resonance
2) Lasers
3) Radioactivity
4) Nuclear fusion
25. A solenoid 1.5 m long and 0.14 cm in diameter possesses 10 turns per $\mathbf{c m}$ length. A current of 5 A falls through it. The magnetic field at the axis inside the solenoid is
1) $2 \pi \times 10^{-3} \mathrm{~T}$
2) $2 \pi \times 10^{-5} \mathrm{~T}$
3) $4 \pi \times 10^{-2} \mathrm{~T}$
4) $4 \pi \times 10^{-3} \mathrm{~T}$
26. A long straight wire of radius a carries a steady current $I$. The current is uniformly distributed across its cross - section. The ratio of the magnetic field at $\frac{a}{2}$ and 2 a is
1) $\frac{1}{4}$
2) 4
3) 1
4) $\frac{1}{2}$
27. Two concentric coils each of radius equal to $2 \pi \mathrm{~cm}$ are placed at right angles to each other. 3 A and 4 A are the currents flowing in each coil respectively. The magnetic induction in $\mathrm{Wbm}^{-2}$ at the centre of the coils will be $\left(\mu_{o}=4 \pi \times 10^{-7} \mathrm{~Wb} \mathrm{~A}^{-1} \mathrm{~m}^{-1}\right)$
1) $12 \times 10^{-5}$
2) $10^{-5}$
3) $5 \times 10^{-5}$
4) $7 \times 10^{-5}$
28. Assertion (A): The magnetic field produced by a current carrying solenoid is independent of its length and cross - sectional area.
Reason ( $R$ ): The magnetic field inside the solenoid is uniform.
1) Both $A$ and $R$ are correct. $R$ is the correct explanation of $A$.
2) Both $A$ and $R$ are correct. $R$ is not the correct explanation of $A$.
3) $A$ is true, but $R$ is false.
4) Both $A$ and $R$ are false.
29. Two identical wires $A$ and $B$ have the same length $L$ and carry the same current $I$. Wire $A$ is bent into a circle of radius $R$ and wire $B$ is bent to form a square of side a. If $B_{1}$ and $B_{2}$ are the values of magnetic induction at the centre of the circle and the centre of the square respectively, then the ratio $B_{1} / B_{2}$ is
1) $\frac{\pi^{2}}{8}$
2) $\frac{\pi^{2}}{8 \sqrt{2}}$
3) $\frac{\pi^{2}}{16}$
4) $\frac{\pi^{2}}{16 \sqrt{2}}$
30. The magnetic field at the centre of a circular current carrying conductor of radius $r$ is $B_{c}$. The magnetic field on its axis at a distance $r$ from the centre is $B_{a}$. The value of $B_{c}: B_{a}$ will be
1) $1: \sqrt{2}$
2) $1: 2 \sqrt{2}$
3) $2 \sqrt{2}: 1$
4) $\sqrt{2}: 1$
31. A vertical straight conductor carries a current upward. A point $P$ lies to the east of it a small distance and another point $Q$ lies to the west at the same distance. The magnetic field at $P$ is
1) Greater than at $Q$
2) Same as at $Q$
3) Less than at $Q$
4) Greater or less than at $Q$ depending upon the strength of current
32. Two concentric circular coils of ten turns each are situated in the same plane. Their radii are 20 cm and 40 cm and they carry respectively 0.2 A and 0.3 A currents in opposite direction. The magnetic field in tesla at the centre is
1) $5 \mu_{o} / 4$
2) $\mu_{o} / 80$
3) $7 \mu_{o} / 80$
4) $3 \mu_{o} / 4$
33. Two long straight wires are set parallel to each other at separation $r$ and each carries a current $I$ in the same direction. The strength of the magnetic field at any point midway between the two wires is
1) $\frac{\mu_{o} I}{\pi r}$
2) $\frac{2 \mu_{o} I}{\pi r}$
3) $\frac{\mu_{o} I}{2 \pi r}$
4) Zero
34. A long solenoid has 20 turns $\mathrm{cm}^{-1}$. The current necessary to produce a magnetic field of 20 mT inside the solenoid is approximately
1) 1 A
2) 2 A
3) 4 A
4) 8 A
35. A long solenoid carrying a current produces a magnetic field $B$ along its axis. If the current is doubled and the number of turns per cm is halved, the new value of the magnetic field is
1) $2 B$
2) 4 B
3) $B / 2$
4) B
36. Two identical coils having same number of turns and carrying equal current have common centre and their planes are at right angles to each other. What is the ratio of magnitude of the resultant magnetic field at the centre and magnetic field due to one of the coils at the centre?
1) $1: \sqrt{2}$
2) $\sqrt{2}: 1$
3) $1: 1$
4) $2: 1$
37. A straight wire of mass 200 g and length 1.5 m carries a current of 2 A . It is suspended in mid - air by a uniform horizontal magnetic field $B$. The magnitude of $B$ (in tesla) is (Assume $g=9.8 \mathrm{~ms}^{-2}$ )
1) 2
2) 1.5
3) 0.55
4) 0.65
38. A solenoid of length $\mathbf{0 . 5 m}$ has radius of 1 cm and is made up of 500 turns. It carries a current of 5 A . The magnitude of magnetic field inside the solenoid is
1) $6.28 \times 10^{-3} \mathrm{~T}$
2) $5 \times 10^{3} \mathrm{~T}$
3) $3.2 \times 10^{-2} \mathrm{~T}$
4) $1.5 \times 10^{-5} \mathrm{~T}$
39. For the magnetic field to be maximum due to a small element of current carrying conductor at a point, the angle between the element and the line joining the element to the given point must be
1) $0^{\circ}$
2) $90^{\circ}$
3) $180^{\circ}$
4) $45^{\circ}$

Key

1) $\mathbf{c}$
2) $d$
3) $\mathbf{c}$
4) d 5) $\mathbf{a}$
5) $b$
6) $\mathbf{b}$
7) $\mathbf{a}$ 9) $\mathbf{c}$
8) b
9) $\mathbf{a}$
10) $\mathbf{c}$
11) $\mathbf{c}$
12) $\mathbf{c}$
13) b 16) b
14) $\mathbf{c}$
15) $\mathbf{a}$
16) $\mathbf{c}$
17) $\mathbf{d}$
18) $\mathbf{a}$
19) $\mathbf{c}$
20) b
21) $\mathbf{a}$
22) $a$
23) $\mathbf{c}$
24) $\mathbf{c}$
25) $b$
26) b
27) $\mathbf{c}$
28) b
29) d
30) $\mathbf{d}$
31) d
32) $\mathbf{d}$
33) $b$
34) d
35) $\mathbf{a}$
36) $\mathbf{b}$

Solutions

1. $R=R_{1}+R_{2}=5+5=10 \Omega$
$i=\frac{V}{R}=\frac{10}{10}=1 \mathrm{~A}$
2. $B_{1}=\frac{\mu_{o}}{4 \pi} \cdot \frac{2 i}{R}$ and $B_{2}=\frac{\mu_{o}}{4 \pi} \cdot \frac{4 i}{R}$
$B_{2}-B_{1}=\frac{\mu_{o}}{4 \pi} \cdot \frac{2 i}{r}=B$
$B_{2}=2 B_{1}$
$2 B_{1}-B_{1}=B$
$\therefore B_{1}=B$
3. $\quad B_{\text {axis }}=\frac{\mu_{o}}{4 \pi} \frac{2 \pi I R^{2}}{\left(x^{2}+R^{2}\right)^{3 / 2}}$

At centre

$$
B_{\mathrm{centre}}=\frac{\mu_{o} I}{2 R}
$$

Dividing, $\frac{B_{\text {axis }}}{B_{\text {centre }}}=\frac{\mu_{o} I R^{2}}{2\left(x^{2}+R^{2}\right)^{3 / 2}} \times \frac{2 R}{\mu_{o} I}$
$\frac{R^{3}}{\left(x^{2}+R^{2}\right)^{3 / 2}}=\frac{1}{8}$

Or $\frac{R}{\left(x^{2}+R^{2}\right)^{1 / 2}}=\frac{1}{2}$
$\Rightarrow x=\sqrt{3} R$
5. $\quad B=\frac{\mu_{o}}{4 \pi} \times \frac{2 i}{a}$
$\Rightarrow 10^{-6}=\frac{10^{-7} \times 2 \times i}{0.02} \Rightarrow i=0.1 \mathrm{~A}$
6. $B=\frac{\mu_{0} i}{2 \pi r}$ or $B \propto \frac{1}{2}$ or $\frac{B_{2}}{B_{1}}=\frac{r_{1}}{r_{2}}$
$\therefore \quad \frac{B_{2}}{B}=\frac{5}{20}=\frac{1}{4} \quad$ or $\quad B_{2}=\frac{B}{4}$
7. $d B=\frac{\mu_{o}}{4 \pi} \frac{i d l \sin \theta}{r^{2}}$

This is maximum when $\sin \theta=1=\sin 90^{\circ}$
$\theta=90^{\circ}$
8. $B=\mu_{o} n i=4 \pi \times 10^{-7} \times 5 \times 1000=2 \pi \times 10^{-3} T$
9. $\quad B_{1}=\frac{\mu_{o}}{4 \pi} \times \frac{i}{(L / 2)}\left[\sin 45^{\circ}+\sin 45^{\circ}\right]$
$=\frac{\mu_{o}}{4 \pi} \times \frac{2 \sqrt{2} i}{L}$
Field at centre due to the four arms of the square
$B=4 B_{1}=\frac{\mu_{o}}{\pi} \times \frac{2 \sqrt{2} i}{L}$
$\therefore B \propto \frac{1}{L}$
10. $\quad B=\mu_{o} n i$

Here $\mu_{o}=4 \pi \times 10^{-7} \mathrm{TmA}^{-1}$
$n=\frac{1000}{50 \times 10^{-2}}, i=5 \mathrm{~A}$
$B=4 \pi \times 10^{-7} \times \frac{1000}{50 \times 10^{-2}} \times 5$
$B=1.26 \times 10^{-2} T$
12. The magnetic field at the centre of a circle is given by

$$
B=\frac{\mu_{o} i}{2 r}
$$

where, $i$ is current and $r$ the radius of circle

Also, $\quad i=\frac{q}{t}$
For helium nucleus, $\mathrm{q}=2 \mathrm{e}$
$\therefore i=\frac{2 e}{t}$
Or $B=\frac{\mu_{o} .2 e}{2 r t}=\frac{\mu_{o} \times 2 \times 1.6 \times 10^{-19}}{2 \times 0.8 \times 2}=10^{-19} \mu_{o}$
13. $B=\frac{\mu_{o} N i}{l}$, where $\mathrm{N}=$ total number of turns, $l=$ length of the solenoid
$\Rightarrow 0.2=\frac{4 \pi \times 10^{-7} \times N \times 10}{0.8}$
$\Rightarrow N=\frac{4 \times 10^{4}}{\pi}$

Since N turns are made from the winding wire, so length of the wire $(L)=2 \pi r \times N \quad[2 \pi r=$ length of each turns]
$\Rightarrow L=2 \pi \times 3 \times 10^{-2} \frac{4 \times 10^{4}}{\pi}=2.4 \times 10^{3} \mathrm{~m}$
15. $B=\frac{\mu_{o} 2 I}{4 \pi r}$

When $\mathrm{r}=5 \mathrm{~cm}$
$\therefore B=\frac{\mu_{0} 2 I}{4 \pi(5)}$

When $\mathrm{r}=20 \mathrm{~cm}$
$B^{\prime}=\frac{\mu_{o} 2 I}{4 \pi(20)}$
From Equations, (i) and (ii), $B^{\prime}=\frac{B}{4}$
18. At the midpoint, $B B_{\text {net }}=B_{A B}+B_{C D}$
$=\frac{\mu_{o} i}{2 r}+\frac{\mu_{o} i}{2 r}=\frac{\mu_{o} i}{r}$
19. $B_{1}=\frac{\mu_{o} \times 2 i}{2 \times R}$ and $B_{2}=\frac{\mu_{o} i}{4 R}$

$$
B_{\mathrm{net}}=\frac{\mu_{o} i}{R}-\frac{\mu_{o} i}{4 R}=\frac{3 \mu_{o} i}{4 R}
$$

21. $\quad B_{\text {centre }}=\frac{4 \times \mu_{o}}{4 \pi} \times \frac{1}{(a / 2)}\left(\sin 45+\sin 45^{\circ}\right)$
$=4 \times \frac{\mu_{o}}{4 \pi} \times \frac{2 I}{a} \times \frac{2}{\sqrt{2}}$
$=\frac{4 \pi \times 10^{-7} \times 1.414 \times 2 \times \sqrt{2}}{\pi \times 2 \times 10^{-2}}$
$=8 \times 10^{-5} \mathrm{~T}$
22. $\quad B=\mu_{o} n I$

Here $n=10$ turns $\mathrm{cm}^{-1}=1000$ turns $^{-1}, I=5 A$
$B=4 \pi \times 10^{-7} \times 1000 \times 5$
$=2 \pi \times 10^{-3} T$
26. Current density $J=\frac{1}{\pi a^{2}}$

From Ampere's circuital law
$\oint B . d l=\mu . I_{\text {enclosed }}$

For $\mathrm{r}<\mathrm{a}$

$$
\begin{aligned}
& B \times 2 \pi r=\mu_{o} \times J \times \pi r^{2} \\
\Rightarrow & B=\frac{\mu_{o} I}{\pi a^{2}} \times \frac{r}{2}
\end{aligned}
$$

At $r=a / 2$

$$
B_{1}=\frac{\mu_{o} I}{4 \pi a}
$$

For $\mathrm{r}>\mathrm{a}$
$B \times 2 \pi=\mu_{0} I \Rightarrow B=\frac{\mu_{o} I}{2 \pi r}$

At $r=2 \mathrm{a} \quad B_{2}=\frac{\mu_{o} i}{4 \pi a}$

So, $\frac{B_{1}}{B_{2}}=1$
27. $B_{P}=\frac{\mu_{o} I_{2}}{2 R}$
$=\frac{4 \pi \times 10^{-7} \times 4}{2 \times 0.02 \pi}=4 \times 10^{-5} \mathrm{Wbm}^{-2}$
$B_{Q}=\frac{\mu_{o} I_{1}}{2 R}$
$=\frac{4 \pi \times 10^{-7} \times 3}{2 \times 0.02 \pi}=3 \times 10^{-5} \mathrm{Wbm}^{-2}$
$\therefore B=\sqrt{B_{P}^{2}+B_{Q}^{2}}$
$=\sqrt{\left(4 \times 10^{-5}\right)^{2}+\left(3 \times 10^{-5}\right)^{2}}$
$=5 \times 10^{-5} \mathrm{Wbm}^{-2}$
29. $\quad B_{1}=\frac{\mu_{o}}{4 \pi} \times \frac{2 \pi I}{R}$
$=\frac{\mu_{o}}{4 \pi} \times \frac{2 \pi I \times 2 \pi}{L}$
$(\because L=2 \pi R$, for circular loop)
$B_{2}=\frac{\mu_{o}}{4 \pi} \times \frac{I}{(a / 2)}\left[\sin 45^{\circ}+\sin 45^{\circ}\right] \times 4$
where

$$
a=L / 4
$$

$\therefore \quad B_{2}=\frac{\mu_{o} I}{4 \pi L} \times 8 \times 4 \times\left[\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}\right]$
$\frac{\mu_{o} I}{4 \pi L} \times \frac{64}{\sqrt{2}}$
Hence, $\frac{B_{1}}{B_{2}}=\left(\frac{\mu_{o}}{4 \pi}\right) \times \frac{4 \pi^{2} I}{L} / \frac{\mu_{o} I}{4 \pi L} \times \frac{64}{\sqrt{2}}$
or $\frac{B_{1}}{B_{2}}=\frac{\pi^{2}}{8 \sqrt{2}}$
30. Magnetic induction at the centre of the coil of radius $r$ is

$$
B_{c}=\frac{\mu_{o} n I}{2 r}
$$

Magnetic induction on the axial line of a circular coil at a distance $x$ from the centre is

$$
B_{a}=\frac{\mu_{o} n r^{2} I}{2\left(r^{2}+x^{2}\right)^{3 / 2}}
$$

Given $x=r$
$\therefore B_{a}=\frac{\mu_{o} n r^{2} I}{2(2 r 2)^{3 / 2}}$

From Equations (i) and (ii), we get
$\frac{B_{c}}{B_{a}}=\frac{2 \sqrt{2}}{1}$
32. $B=\frac{\mu_{0} n I}{2 r}$

For first coil, $\quad B_{1}=\frac{\mu_{o} n I_{1}}{2 r_{1}}$

For second coil, $B_{2}=\frac{\mu_{0} n I_{2}}{2 r_{2}}$
Resultant magnetic field at the centre of concentric loop is
$B=\frac{\mu_{o} n I_{1}}{2 r_{1}}-\frac{\mu_{o} n I_{2}}{2 r_{2}}$

But , $n=10, I_{1}=0.2, r_{1}=20 \mathrm{~cm}=0.20 \mathrm{~m}$
$I_{2}=0.3 \mathrm{~A}, r_{2}=40 \mathrm{~cm}=0.40 \mathrm{~m}$
$\therefore B=\mu_{o}\left[\frac{10 \times 0.2}{2 \times 0.2}-\frac{10 \times 0.3}{2 \times 0.4}\right]=\frac{5}{4} \mu_{o}$
34. $B=\mu_{o} n I$
or $20 \times 10^{-3}=4 \pi \times 10^{-7} \times 2000 \times I$
or $I=\frac{20 \times 10^{-3}}{4 \pi \times 10^{-7} \times 2000}$
$\Rightarrow I \approx 8 A$
35. $B \propto n I$
$\therefore \frac{B_{1}}{B_{2}}=\frac{n_{1} I_{1}}{n_{2} I_{2}}$

Here $n_{1}=n, n_{2}=\frac{n}{2}, I_{1}=I, I_{2}=2 I, B_{1}=B$
$\therefore \frac{B}{B_{2}}=\frac{n}{n / 2} \times \frac{I}{2 I}=1$
or $\quad B_{2}=B$
36. $\quad B_{r}=\sqrt{B^{2}+B^{2}}=\sqrt{2} B$

Hence, the required ratio will be

$$
\frac{B_{r}}{B}=\sqrt{2}
$$

37. Magnetic force ôn straight wire

$$
F=B I l \sin \theta=B I l \sin 90^{\circ}=B_{H}
$$

For equilibrium of wire in mid - air

$$
\begin{gathered}
\mathrm{F}=\mathrm{mg} \\
B I l=m g \\
\therefore \quad B=\frac{m g}{I l}=\frac{200 \times 10^{-3} \times 9.8}{2 \times 1.5}=0.65 \mathrm{~T}
\end{gathered}
$$

38. Number of turns per unit length
$n=\frac{500}{0.5}=1000$ turns $^{-1}$

Given $l=0.5 m, r=0.01 m$

Since $\frac{l}{a}=50$, i.e., $l \gg a$

Therefore, $B=\mu_{o} n i=4 \pi \times 10^{-7} \times 10^{3} \times 5$
$B=6.28 \times 10^{-3} T$

Motion of a charged particle in a magnetic field

2011

1. The total energy of electron in the second excited state is -2E. What is its potential energy in the same state with proper sign?
1) $-2 E$
2) -4 E
3) 4 E
4) -E
2. Two particles $A$ and $B$ having equal charges $+6 C$, after being accelerated through the same potential difference, enter a region of uniform magnetic field and describe circular paths of radii 2 cm and 3 cm respectively. The ratio of mass of $A$ to that of $B$ is
1) $4 / 9$
2) $9 / 5$
3) $1 / 2$
4) $1 / 3$
3. A metallic rod of length $R$ is rotated through with an angular frequency $\omega$ with one end hinged at the centre and the other end at the circumference of a circular metallic ring of radius $R$, about an axis passing through the centre and perpendicular to the plane of the ring. There is a magnetic field $B$, perpendicular to the plane of the ring. The emf induced between the centre and the metallic ring is
1) $B \sin \omega t$
2) $\frac{B R^{2} \omega}{2}$
3) $2 B R^{2} \omega$
4) $B R^{2} \omega$
4. The path of a charged particle in a uniform magnetic field, when the velocity and the magnetic field are perpendicular to each other is a
1) Circle
2) Parabola
3) Helix
4) Straight Line
5. A proton travelling at $23^{\circ}$ w.r.t the direction of a magnetic field of strength 2.6 mT experiences a magnetic force of $6.5 \times 10^{-17} \mathrm{~N}$. What is the speed of the proton?
1) $2 \times 10^{5} \mathrm{~ms}^{-1}$
2) $4 \times 10^{5} \mathrm{~ms}^{-1}$
3) $6 \times 10^{5} \mathrm{~ms}^{-1}$
4) $6 \times 10^{-5} \mathrm{~ms}^{-1}$
6. What uniform magnetic field applied perpendicular to a beam of electrons moving at $1.3 \times 10^{6} \mathrm{~ms}^{-1}$, is required to make the electrons travel in a circular arc of radius $\mathbf{0 . 3 5 m}$ ?
1) $2.1 \times 10^{-5} G$
2) $6 \times 10^{-5} \mathrm{~T}$
3) $2.1 \times 10^{-5} \mathrm{~T}$
4) $6 \times 10^{-5} G$
7. A uniform electric field and a uniform magnetic field are acting along the same direction in a certain region. If an electron is projected in the region such that its velocity is pointed along the direction of fields, then the electron
1) Speed will decrease
2) Speed will increase
3) Will turn towards left of direction of motion
4) Will turn towards right of direction of a motion
8. A deuteron of kinetic energy 50 keV is describing a circular orbit of radius 0.5 m , in a plane perpendicular to magnetic field $B$. The kinetic energy of a proton that describes circular orbit of radius 0.5 m in the same plane with the same magnetic field is
1) 200 keV
2) 50 keV
3) 100 keV
4) 25 keV
9. A charged particle enters a magnetic field $H$ with its initial velocity making an angle of $45^{\circ}$ with H . The path of the particle will be
1) Straight wire
2) A circle
3) An ellipse
4) A helix
10. A charged particle moving with velocity $4 \times 10^{6} \mathrm{~ms}^{-1}$ enters perpendicular to a magnetic field $B=2 \mathrm{Wbm}^{-2}$. It moves in a circular path of radius 2 cm , and then charge per unit mass is
1) $10^{2} \mathrm{Ckg}^{-1}$
2) $10^{3} \mathrm{C} \mathrm{kg}^{-1}$
3) $10^{4} \mathrm{Ckg}^{-1}$
4) $10^{8} \mathrm{C} \mathrm{kg}^{-1}$
11. An electron of mass $m$ and charge $q$ is travelling with a speed $v$ along a circular path of radius $r$ at right angles to a uniform magnetic field $B$. If speed of the electron is doubled and the magnetic field is halved, then resulting path would have a radius of
1) $\frac{r}{4}$
2) $\frac{r}{2}$
3) $2 r$
4) 4 r
12. A charged particle moves along a circle under the action of magnetic and electric fields, then the region of space may have
1) $\mathrm{E}=0, \mathrm{~B}=0$
2) $\mathrm{E}=0, \mathrm{~B} \neq 0$
3) $\mathrm{E} \neq 0, \mathrm{~B}=0$
4) $\mathrm{E} \neq 0, \mathrm{~B} \neq 0$
13. An electric field of $1500 \mathrm{Vm}^{-1}$ and a magnetic field of $0.40 \mathrm{Wbm}^{-2}$ act on a moving electron. The minimum uniform speed along a straight line, the electron could have is
1) $1.5 \times 10^{15} \mathrm{~ms}^{-1}$
2) $6 \times 10^{-16} \mathrm{~ms}^{-1}$
3) $3.75 \times 10^{3} \mathrm{~ms}^{-1}$
4) $3.75 \times 10^{2} \mathrm{~ms}^{-1}$
14. Two particles of masses $m_{a}$ and $m_{b}$ same charge are projected in a perpendicular magnetic field. They travel along circular paths of radius $r_{a}$ and $r_{b}$ such that $r_{a}>r_{b}$. Then which is true?
1) $m_{a} v_{a}>m_{b} v_{b}$
2) $m_{a}>m_{b}$ and $v_{a}>v_{b}$
3) $m_{a}=m_{b}$ and $v_{a}=v_{b}$
4) $m_{b} v_{b}>m_{a} v_{a}$
15. A charge $+Q$ is moving upwards vertically. It enters a magnetic field direction to north. The force on the charge will be towards
1) North
2) South
3) East
4) West
16. A proton enters a magnetic field of flux density $1.5 \mathrm{Wbm}^{-2}$ with a speed of $2 \times 10^{7} \mathrm{~ms}^{-1}$ at angle of $30^{\circ}$ with the field. The force on a proton will be
1) $0.24 \times 10^{-12} \mathrm{~N}$
2) $2.4 \times 10^{-12} \mathrm{~N}$
3) $24 \times 10^{-12} \mathrm{~N}$
4) $0.024 \times 10^{-12} \mathrm{~N}$

2009
17. The magnetic force acting on a charged particle of charge $-2 \mu C$ in a magnetic field of $2 T$ acting in $\mathbf{y} \boldsymbol{-}$ direction when the particle velocity is $(2 i+3 j) \times 10^{6} \mathrm{~ms}^{-1}$ is

1) 8 N in -z direction
2) 4 N in z direction
3) 8 N in y direction
4) 8 N in z direction
18. In a mass spectrometer used for measuring the masses of ions, the ions are initially accelerated by an electric potential $V$ and then made to describe semicircular paths of radius $R$ using a magnetic field $B$. If $V$ and $B$ are kept constant, the ratio $\left(\frac{\text { charge on theion }}{\text { mass of theion }}\right)$ will be proportional to
1) $\frac{1}{R}$
2) $\frac{1}{R^{2}}$
3) $R^{2}$
4) $R$
19. A beam of electrons is moving with constant velocity in a region having electric and magnetic fields of strength $20 \mathrm{Vm}^{-1}$ and 0.5 T at right angles to the direction of motion of the electrons. What is the velocity of the electrons?
1) $20 \mathrm{~ms}^{-1}$
2) $40 \mathrm{~ms}^{-1}$
3) $8 \mathrm{~ms}^{-1}$
4) $5.5 \mathrm{~ms}^{-1}$
20. A charged particle with velocity $v=x i+y j$ moves in a magnetic field $B=y i+x j$. Magnitude of the force acting on the particle is $F$. The correct option for $F$ is
i) No force will act on particle if $x=y$
ii) Force will act along $y-$ axis if $y<x$
iii) Force is proportional to $\left(x^{2}-y^{2}\right)$ if $x>y$
iv) Force is proportional to $\left(x^{2}+y^{2}\right)$ if $y>x$
1) I and ii are true
2) I and iii are true
3) ii and iv are true
4) iii and iv are true
21. A charged particle enters in a strong perpendicular magnetic field. Then its kinetic energy
1) Increases
2) Decreases
3) Remains constant
4) First increases and then becomes constant
22. A cyclotron can accelerate
1) $\beta$-particles
2) $\alpha$-particles
3) High velocity gamma rays
4) High velocity $X$ - rays
23. A $\alpha$-particle and a deuteron projected with equal kinetic energies describe circular paths of radii $r_{1}$ and $r_{2}$ respectively in a uniform magnetic field. The ratio $r_{1} / r_{2}$ is
1) 1
2) 2
3) $\frac{1}{\sqrt{2}}$
4) $\sqrt{2}$
24. When a positively charged particle enters a uniform magnetic field with uniform velocity, its trajectory can be
i) A Straight Line
ii) A Circle
iii) A Helix
1) i only
2) i or ii
3) i or ii
4) any one of i, ii and iii
25. Proton and $\alpha$ - particle are projected perpendicularly in a magnetic field, if both move in a circular path with same speed. Then the ratio of their radii is
1) $1: 2$
2) $2: 1$
3) $1: 4$
4) $1: 1$

2008
26. A particle mass $m$, charge $Q$ and kinetic energy $T$ enters a transverse uniform magnetic field of induction $B$. After 3s the kinetic energy of the particle will be

1) 3 T
2) 2 T
3) T
4) 4 T
27. A proton, a deuteron and an $\alpha$-particle with the same kinetic energy enter a region of uniform magnetic field, moving at right angles to $B$. What is the ratio of the radii of their circular paths?
1) $1: \sqrt{2}: 1$
2) $1: \sqrt{2}: \sqrt{2}$
3) $\sqrt{2}: 1: 1$
4) $\sqrt{2}: \sqrt{2}: 1$
28. Frequency of cyclotron does not depend upon
1) Charge
2) Mass
3) Velocity
4) $\frac{q}{m}$
29. Under the influence of a uniform magnetic field a charged particle is moving in a circle of radius $R$ with constant speed $v$. The time period of the motion
1) Depends on vand not on R
2) Depends on both $R$ and $v$
3) Is independent of both $R$ and $v$
4) Depends on $R$ and not on $v$
30. Which of the following while in motion cannot be deflected by magnetic field?
1) Protons
2) Cathode rays
3) Alpha particles
4) Neutrons
31. A proton is moving in a magnetic field $B$ is a circular path of radius a in a direction perpendicular to z - axis along which field B exists. Calculate the angular momentum, if the radius is a charge on proton is $e$
1) $\frac{B e}{a^{2}}$
2) $e B^{2} a$
3) $a^{2} e B$
4) $a e B$
32. The magnetic force on a charged particle moving in the field does no work, because
1) Kinetic Energy of the charged particle does not change.
2) The charge of the particle remains same.
3) The magnetic force is parallel to velocity of the particle.
4) The magnetic force is parallel to magnetic field.
www.sakshieducation.com
33. A charged particle (charge $q$ ) is moving in a circle of radius $R$ with uniform speed $v$. The associated magnetic moment $\mu$ is given by
1) $\frac{q v R}{2}$
2) $q v R^{2}$
3) $\frac{q v R^{2}}{2}$
4) $q v R$
34. The path of an electron in a uniform magnetic field may be
1) Circular but not helical
2) Helical but not circular
3) Neither circular nor circular
4) Either helical or circular
35. The figure shows three situations when an electron with velocity $v$ travels through a uniform magnetic field $B$. In each case, what is the direction of magnetic force on the electron?
1)     + ve $z$ - axis, -ve $x-$ axis, +ve $y$ - axis
2) -ve $z$-axis, -ve $x-$ axis and zero
3)     + ve $z$ - axis, +ve $y-$ axis and zero
4) -ve $z$-axis, +ve $x-$ axis and zero
36. A beam of protons with velocity $4 \times 10^{5} \mathrm{~ms}^{-1}$ enters a magnetic field of $\mathbf{0 . 3 T}$ at an angle of $60^{\circ}$ to the magnetic field. Find the radius of the helical path taken by the proton beam
1) 0.2 cm
2) 1.2 cm
3) 2.2 cm
4) 0.122 cm
37. A charged particle moves through a magnetic field in a direction perpendicular to it. Then the
1) Acceleration remains unchanged
2) Velocity remains unchanged
3) Speed of the particle remains unchanged
4) Direction of the particle remains unchanged
38. An electron is travelling along the $x$ - direction. It encounters a magnetic field in the $\mathbf{y}$ direction. Its subsequent motion will be
1) Straight line along the $x$ - direction
2) A circle in the $x z$ - plane
3) A circle in the $y z$ - plane
4) A circle in $x y$ - plane
39. An electron and proton enter a magnetic field perpendicularly. Both have same kinetic energy. Which of the following is true?
1) Trajectory of electron is less curved
2) Trajectory of proton is less curved
3) Both trajectories are equally curved
4) Both move on straight line path
adion.com
40. When a charged particle moving with velocity $v$ is subjected to a magnetic field of induction $B$, the force on it is non - zero. This implies that
1) Angle between v and $B$ is necessarily $90^{\circ}$
2) Angle between $v$ and $B$ can have any value other than $90^{\circ}$
3) Angle between vand B can have any value other than zero and $180^{\circ}$
4) Angle between $v$ and $B$ is either zero or $180^{\circ}$
41. When deuterium and helium are subjected to an accelerating field simultaneously then
1) Both acquire same energy
2) Deuterium accelerates faster
3) Helium accelerates faster
4) Neither of them is accelerated
42. An electron revolves in a circle of radius $0.4 \stackrel{o}{A}$ with a speed of $10^{5} \mathrm{~ms}^{-1}$. The magnitude of the magnetic field, produced at the centre of the circular path due to the motion of the electron, in $\mathrm{Wbm}^{-2}$ is
1) 0.01
2) 10
3) 1
4) 0.005
5) 5
43. A plane metallic sheet is placed with its face parallel to lines of magnetic induction $B$ of a uniform field. A particle of mass $m$ and charge $q$ is projected with a velocity $\mathbf{v}$ from a distance $d$ from the plane normal to the lines of induction. Then, the maximum velocity of projection for which the particle does not hit the plate is
1) $\frac{2 B q d}{m}$
2) $\frac{B q d}{m}$
3) $\frac{B q d}{2 m}$
4) $\frac{B q m}{d}$
44. An electron moves at right angle to a magnetic field of $1.5 \times 10^{-2} \mathrm{~T}$ with a speed of $6 \times 10^{7} \mathrm{~ms}^{-1}$. If the specific charge of the electron is $1.7 \times 10^{11} \mathrm{Ckg}^{-1}$, the radius of the circular path will be
1) 2.9 cm
2) 3.9 cm
3) 2.35 cm
4) 2 cm
45. If velocity of a charged particle is doubled and strength of magnetic field is halved, then radius becomes
1) 8 times
2) 2 times
3) 4 times
4) 3 times
46. A charged particle enters a uniform magnetic field with a certain speed at right angles to $i t$. In the magnetic field a change could occur in its
1) Kinetic Energy
2) Angular Momentum
3) Linear Momentum
4) Speed

2005
47. Cyclotron is a device which is used to

1) Measure the charge
2) Measure the voltage
3) Accelerate protons
4) Accelerate electrons
48. In a cyclotron, if a deuteron can gain energy of 40 MeV , then a proton can gain energy of
1) 40 MeV
2) 80 MeV
3) 20 MeV
4) 60 MeV
49. An electron, moving in a uniform magnetic field of induction of intensity $B$, has its radius directly proportional to
1) Its Charge
2) Magnetic Field
3) Speed
4) None of these
50. An electron projected in a perpendicular uniform magnetic field of $3 \times 10^{-3} \mathrm{~T}$, moves in a circle of radius $\mathbf{4 m m}$. The linear momentum of electron (in $\mathrm{kg}-m s^{-1}$ ) is
1) $1.92 \times 10^{-21}$
2) $1.2 \times 10^{-2}$
3) $1.92 \times 10^{-24}$
4) $1.2 \times 10^{-21}$

## Motion of a charged particle in a magnetic field

## Kеу

1) $b$
2) a
3) $b$
4) $\mathbf{c}$
5) $b$
6) c
7) $\mathbf{a}$
8) $\mathbf{c}$
9) $d$
10) d
11) d
12) $\mathbf{b}$
13) $\mathbf{a}$
14) $\mathbf{a}$
15) $d$
16) $b$
17) b
18) $a$
19) $\mathbf{a}$
20) b
21) $\mathbf{c}$
22) b
23) $\mathbf{c}$ 24) $\mathbf{d}$
24) $\mathbf{c}$
25) $\mathbf{c}$
26) a 28) $\mathbf{c}$
27) $\mathbf{c}$ 30) $\mathbf{a}$
28) $\mathbf{c}$
29) $\mathbf{a}$
30) $\mathbf{a}$
31) d
32) d
33) b
34) $\mathbf{c}$ 38) d
35) $\mathbf{a}$
36) b
37) $\mathbf{d}$ 42) $\mathbf{c}$ 43) $\mathbf{b}$ 44) $\mathbf{c}$ 45) $\mathbf{c}$ 46) $\mathbf{c}$ 47) $\mathbf{c}$ 48) $\mathbf{b}$ 49) $\mathbf{c}$ 50) $\mathbf{c}$ www.sakshieducation.com

## Solutions

1. $E=E_{i}-E_{f}$
$-2 E+x=2 E$

$$
\begin{aligned}
& x=4 E \\
& x=-4 E
\end{aligned}
$$

2, $r=\frac{\sqrt{2 m q V}}{q B}=\sqrt{\frac{2 m V}{a B^{2}}}$
$\frac{r_{1}}{r_{2}}=\sqrt{\frac{m_{1}}{m_{2}}}$
$\frac{m_{1}}{m_{2}}=\frac{r_{1}^{2}}{r_{2}^{2}}$
Hence, $\frac{m_{1}}{m_{2}}=\frac{(2)^{2}}{(3)^{2}}=\frac{4}{9}$
3. The emf induced between the centre and the metallic ring $=\frac{1}{2} B R^{2} \omega$
5. $\quad \theta=23^{\circ}, B=2.6 \mathrm{mT}=2.6 \times 10^{-6} T$ and $F=6.5 \times 10^{-17} \mathrm{~N}$

But, $F=q v B \sin \theta$
$6.5 \times 10^{-17}=1.6 \times 10^{-19} \times v \times 2.6 \times 10^{-6} \times \sin 23^{\circ}$
$v=\frac{6.5 \times 10^{-17}}{2.6 \times 10^{-6} \times 1.6 \times 10^{-19} \times 0.39}$
$v=4 \times 10^{5} \mathrm{~ms}^{-1}$
6. $r=\frac{m v}{q B}$ or

$$
B=\frac{m v}{q r}=\frac{9.1 \times 10^{-31} \times 1.3 \times 10^{6}}{1 / 6 \times 10^{-19} \times 0.35}=2.1 \times 10^{-5} T
$$

8. $q v B=\frac{m v^{2}}{r}$

$$
r=\frac{m v}{B q}=\frac{2 m E}{q B}
$$

$$
r=\frac{\sqrt{2 m E}}{B q}=\frac{\sqrt{2 m_{1} E_{1}}}{B q}
$$

or $\quad E_{1}=\frac{m E}{m_{1}}=\frac{\left(2 m_{1}\right)}{m_{1}} \times 50 \mathrm{keV} \quad\left[\because m=2 m_{1}\right]=100 \mathrm{keV}$
11. $B q v=\frac{m v^{2}}{r} \Rightarrow r=\frac{m v}{B q}$

$$
\begin{aligned}
& \therefore \frac{r_{1}}{r_{2}}=\frac{v_{1}}{v_{2}} \times \frac{B_{2}}{B_{1}} \\
& \frac{r_{1}}{r_{2}}=\frac{1}{2} \times \frac{1}{2}
\end{aligned}
$$

$$
r_{2}=4 r_{1} \Rightarrow r_{2}=4 r
$$

13. $q E=q v B$

$$
\begin{aligned}
& v=\frac{E}{B}=\frac{1500}{0.40} \\
& =3750 \mathrm{~ms}^{-1} \\
& v=3.75 \times 10^{-3} \mathrm{~ms}^{-1}
\end{aligned}
$$

14. $r_{a}=\frac{m_{a} v_{a}}{q B}$

And $r_{b}=\frac{m_{b} v_{b}}{q B}$

But, $r_{a}>r_{b}$
$\therefore \frac{m_{a} v_{a}}{q B}>\frac{m_{b} v_{b}}{q B}$
or $m_{a} v_{a}>m_{b} v_{b}$
16. $F=q v B \sin \theta$
$\therefore F=\left(1.6 \times 10^{-19}\right) \times\left(2 \times 10^{7}\right) \times 1.5 \sin 30^{\circ}$

$$
F=1.6 \times 10^{-12} \times 2 \times 1.5 \times \frac{1}{2}
$$

$F=2.4 \times 10^{-2} \mathrm{~N}$
27. $q v B=\frac{m v^{2}}{r}$

$$
r=\frac{m v}{q B}=\sqrt{\frac{2 m E}{q^{2} B^{2}}}
$$

Here, $\mathrm{E}=$ kinetic energy of the particle

$$
\begin{aligned}
& r_{p}=\sqrt{\frac{2 m E}{e^{2} B^{2}}} \\
& r_{d}=\sqrt{\frac{2 \times 2 m \times E}{e^{2} B^{2}}}
\end{aligned}
$$

and $\quad r_{a}=\sqrt{\frac{2 \times 4 m \times E}{(2 e)^{2} B^{2}}}$
$\therefore r_{p}: r_{d}: r_{a}=1: \sqrt{2}: 1$
29. $\frac{m v^{2}}{R}=B q v$ or $R=\frac{m v}{B q}$

$$
\begin{aligned}
& T=\frac{2 \pi R}{v} \\
& =\frac{2 \pi\left(\frac{m v}{B q}\right)}{v} \text { or } T=\frac{2 \pi m}{B q}
\end{aligned}
$$

It is independent of both $R$ and $v$.
31. Under uniform magnetic field, force evB acts on proton and provides the necessary centripetal force $m v^{2} / a$
$\therefore \frac{m v^{2}}{a}=e v B$

$$
\begin{equation*}
\text { or } \quad c=\frac{a e B}{m} \tag{i}
\end{equation*}
$$

## Angular momentum

$$
J=r \times p
$$

Here $J=a \times m v$
$\therefore J=a \times m\left(\frac{q e B}{m}\right)=a^{2} e B$
33. $I=q f=q \times \frac{\omega}{2 \pi}$

But $\omega=\frac{v}{R}$
where $R$ is radius of circle and $v$ is uniform speed of charged particle

Therefore, $I=\frac{q v}{2 \pi R}$

Now, $\mu=I A=I \times \pi R^{2}$
or $\mu=\frac{q v}{2 \pi R} \times \pi R^{2}=\frac{1}{2} q \nu R$
36. Radius of the helical path $r=\frac{m(v \sin \theta)}{q B}$

Here $m=1.67 \times 10^{-27} \mathrm{~kg}$

$$
\begin{aligned}
& v=4 \times 10^{5} \mathrm{~ms}^{-1} \\
& \theta=60^{\circ} \\
& q=1.6 \times 10^{-19} \mathrm{C} \\
& \mathrm{~B}=0.3 \mathrm{~T} \\
& \therefore r=\frac{1.67 \times 10^{-27} \times 4 \times 10^{5} \times(\sqrt{3} / 2)}{1.6 \times 10^{-19} \times 0.3}=1.2 \mathrm{~cm}
\end{aligned}
$$

38. $F=q v \times B$

Here $v=v_{x} i$ and $B-=B_{y} j$
$\therefore R=e v_{x} B_{y}(i \times j)=e v_{x} B_{y} k$

Hence, subsequent motion of the charged particle will be a circle in the $x y$ - plane.
39. $q v B=\frac{m v^{2}}{r}$
$\therefore r=\frac{m v}{q B}$

Now kinetic energy of the particle

$$
K=\frac{1}{2} m v^{2} \Rightarrow m v=\sqrt{2 m K}
$$

Therefore, Equation (i) becomes

$$
r=\frac{\sqrt{2 m K}}{q B} \text { or } r \propto \sqrt{m}
$$

$\therefore \frac{r_{e}}{r_{p}}=\sqrt{\frac{m_{e}}{m_{p}}}$

As $m_{e}<m_{p}$, so $r_{e}<r_{p}$

Hence, trajectory of electron is less curved.
40. $F=q v B \sin \theta$

If $\theta=90^{\circ}$ or $180^{\circ}$, then $\sin \theta=0$
$\therefore R=q v B \sin \theta=0$

Since, force on charged particle is non - zero, so angle between v and B can have any value other than zero and $180^{\circ}$.
42. $B=\frac{\mu_{o}}{4 \pi} \frac{q v}{r^{2}}$

$$
\frac{\mu_{o}}{4 \pi}=10^{-7}, q=1.6 \times 10^{-19} \mathrm{C}
$$

$v=10^{5} \mathrm{~ms}^{-1}$
$r=0.4 \stackrel{o}{A}=0.4 \times 10^{-10} \mathrm{~m}$
$\therefore B=10^{-7} \times \frac{1.6 \times 10^{-19} \times 10^{5}}{\left(0.4 \times 10^{-10}\right)^{2}}=1 \mathrm{Wbm}^{-2}$
43. $\therefore B q v \sin \frac{\pi}{2}=\frac{m v^{2}}{r}$

$$
\Rightarrow r=\frac{m v}{B q}
$$

The particle does not hit the plate if

$$
r \leq d
$$

$$
\text { or } \frac{m v}{B q} \leq d
$$

or $v \leq \frac{B q d}{m}$
$\therefore \quad v_{\max }=\frac{B q d}{m}$
44. $r=\frac{m v}{e B}=\frac{v}{\left(\frac{e}{m}\right) B}$
$\therefore r=\frac{6 \times 10^{7}}{1.7 \times 10^{11} \times 1.5 \times 10^{-2}}=2.35 \mathrm{~cm}$
45. $q v B=\frac{m v^{2}}{r}$
$\Rightarrow r=\frac{m v}{q B}$
$\therefore r^{1}=\frac{m \times 2 v}{q \times \frac{B}{2}}=4 r$
46. $F=q v \times B$ $\qquad$
and centripetal force

$$
\begin{equation*}
F=\frac{m v^{2}}{r} \tag{ii}
\end{equation*}
$$

From Eqs. (i) and (ii), $\quad B=\frac{m v}{r q}=\frac{\text { linear momentum }}{\text { charge }}$
48. $F=q v B=\frac{m v^{2}}{r}=$ centripetal force

Maximum energy $E=\frac{1}{2} \frac{B^{2} q^{2} r^{2}}{m}$

$$
\frac{E_{d}}{E_{p}}=\left(\frac{q_{d}}{q_{p}}\right)\left(\frac{m_{p}}{m_{d}}\right)
$$

$$
\frac{40}{E_{p}}=\left(\frac{q}{q}\right)^{2}\left(\frac{m}{2 m}\right)
$$

$E_{p}=80 \mathrm{MeV}$
49. $F=e v B$

The centripetal force is given by

$$
\begin{equation*}
F=\frac{m v^{2}}{r} \tag{ii}
\end{equation*}
$$

Where, $r$ is radius of circular path.
Equating Eq. (i) with Eq. (ii), we get

$$
F=q v B=\frac{m v^{2}}{r}
$$

$\Rightarrow r=\frac{m v}{q B}$
$\Rightarrow r \propto v$
50. $\frac{m v^{2}}{r}=e v B$
i.e., $r=\frac{m v}{e B}$

$$
p=m v
$$

$\therefore r=\frac{m v}{e B}=\frac{p}{e B} \Rightarrow p=e B r$
$\therefore p=1.6 \times 10^{-19} \times 3 \times 10^{-3} \times 4 \times 10^{-3}=1.92 \times 10^{-24} \mathrm{~kg}-\mathrm{ms}^{-1}$

## Force and Torque on a current carrying conductor

## 2011

1. An electron is accelerated under a potential difference of $\mathbf{1 8 2} \mathbf{V}$. The maximum velocity of electron will be (Charge of electron is $1.6 \times 10^{-19} \mathrm{C}$ and its mass is $9.1 \times 10^{-31} \mathrm{~kg}$ )
1) $5.65 \times 10^{6} \mathrm{~ms}^{-1}$
2) $4 \times 10^{6} \mathrm{~ms}^{-1}$
3) $8 \times 10^{6} \mathrm{~ms}^{-1}$
4) $16 \times 10^{-6} \mathrm{~ms}^{-1}$
2. Magnetic flux of $10 \mu \mathrm{~Wb}$ is linked with a coil, when a current of 2 mA flows through it. What is the self inductance of the coil?
1) 10 mH
2) 5 mH
3) 15 mH
4) 20 mH
3. Pick out the true statement from the following.
1) The direction of eddy current is given by Fleming's right hand rule.
2) A choke coil is a pure inductor used for controlling current in an AC circuit.
3) The energy stored in a conductor of capacitance C having a charge q is $\frac{1}{2} C q^{2}$.
4) The magnetic energy stored in a coil of self - inductance L carrying current I is $\frac{1}{2} L I^{2}$.
5) Induction coil is powerful equipment used for generating high voltages.
4. The torque required to hold a small circular coil of $\mathbf{1 0}$ turns, area $1 \mathrm{~mm}^{2}$. And carrying a current of $(21 / 44) A$ in the middle of a long solenoid of $10^{3} \mathrm{turns}^{-1}$ carrying a current of 2.5 A , with its axis perpendicular to the axis of the solenoid is
1) $1.5 \times 10^{-6} \mathrm{~N}-\mathrm{m}$
2) $1.5 \times 10^{-8} \mathrm{~N}-\mathrm{m}$
3) $1.5 \times 10^{+6} \mathrm{~N}-\mathrm{m}$
4) $1.5 \times 10^{+8} \mathrm{~N}-\mathrm{m}$

2010
5. Magnetic field at the centre of a circular loop of area $A$ is $B$. The magnetic moment of the loop will be

1) $\frac{B A^{2}}{\mu_{o} \pi}$
2) $\frac{B A^{3 / 2}}{\mu_{o} \pi}$
3) $\frac{B A^{3 / 2}}{\mu_{o} \pi^{1 / 2}}$
4) $\frac{2 B A^{3 / 2}}{\mu_{o} \pi^{1 / 2}}$
6. 3A of current is flowing in a linear conductor having a length of 40 mc . The conductor is placed in a magnetic field of strength 500 gauss and makes an angle of $30^{\circ}$ with direction of the field. It experiences a force of magnitude
1) $3 \times 10^{4} \mathrm{~N}$
2) $3 \times 10^{2} \mathrm{~N}$
3) $3 \times 10^{-2} \mathrm{~N}$
4) $3 \times 10^{-4} \mathrm{~N}$
7. Two thin long parallel wires separated by a distance $b$ are carrying a current $i$ ampere each. The magnitude of the force per unit length exerted by one wire on the other, is
1) $\frac{\mu_{o} i^{2}}{b^{2}}$
2) $\frac{\mu_{o} i}{2 \pi b^{2}}$
3) $\frac{\mu_{o} i}{2 \pi b}$
4) $\frac{\mu_{o} i^{2}}{2 \pi b}$
8. A coil in the shape of an equilateral triangle of side 0.02 m is suspended from its vertex such that it is hanging in a vertical plane between the pole pieces of permanent magnet producing a uniform field of $5 \times 10^{-2} T$. If a current of 0.1 A is passed through the coil, what is the couple acting?
1) $5 \sqrt{3} \times 10^{-7} \mathrm{~N}-\mathrm{m}$
2) $5 \sqrt{3} \times 10^{-10} \mathrm{~N}-\mathrm{m}$
3) $\frac{\sqrt{3}}{5} \times 10^{-7} \mathrm{~N}-\mathrm{m}$
4) None of these
9. Assertion (A): Torque on the coil is the maximum, when coil is suspended in a radial magnetic field.
Reason (R): The torque tends to rotate the coil on its own axis.
1) Both $A$ and $R$ are correct. $R$ is the correct explanation of $A$.
2) Both $A$ and $R$ are correct. $R$ is not the correct explanation of $A$.
3) $A$ is true, but $R$ is false.
4) Both $A$ and $R$ are false.
10. A square current carrying loop is suspended in uniform magnetic field acting in the plane of the loop. If the force on one arm of the loop is $F$, the net force on the remaining three arms of the loop is
1) $3 F$
2) -F
3) -3 F
4) $F$
11. A wire of length $L$ is bent in the form of a circular coil and current $i$, is passed through it. If this coil is placed in a magnetic field then the torque acting on the coil will be maximum when the number of turns is
1) As large as possible
2) Any number
3) 2
4) 1
12. A coil of 100 turns and area $2 \times 10^{-2} \mathrm{~m}^{2}$ is pivoted about a vertical diameter in a uniform magnetic field and carries a current of 5 A . When the coil is held with its plane in north - south direction, it experiences a couple of 0.33 Nm . When the plane is east west, the corresponding couple is 0.4 Nm , the value of magnetic induction is (Neglect earth's magnetic field)
1) 0.2 T
2) 0.3 T
3) 0.4 T
4) 0.05 T
13. Two long straight wires are set parallel to each other at separation $r$ and each carries a current $i$ in the same direction. The strength of the magnetic field at any point midway between the two wires is
1) $\frac{\mu_{o} i}{\pi r}$
2) $\frac{2 \mu_{o} i}{\pi r}$
3) $\frac{\mu_{o} i}{2 \pi r}$
4) Zero
14. The ratio of magnetic field and magnetic moment at the centre of a current carrying circular loop is $x$. When both the current and radius is doubled the ratio will be
1) $x / 8$
2) $x / 4$
3) $x / 2$
4) $2 x$

2009
15. In moving coil galvanometer, the magnetic field used is

1) Non - uniform
2) Radial
3) Uniform
4) None of these
16. What is shape of magnet in moving coil galvanometer to make the radial magnet field?
1) Concave
2) Horse shoe magnet
3) Convex
4) None of these
17. Calculate the current which will produce a deflection of $30^{\circ}$ in a tangent galvanometer, if its reduction factor is $\mathbf{3 A}$
1) 1.732 A
2) 0.732 A
3) 3.732 A
4) 2.732 A
18. A copper rod is suspended in a non homogeneous magnetic field region. The rod when in equilibrium with align itself
1) In the region where magnetic field is strongest
2) In the region where magnetic field is weaker and parallel to direction of magnetic field there
3) In the direction in which it was originally suspended
4) In the region where magnetic field is weakest and perpendicular to the direction of magnetic field there
19. In a moving coil galvanometer, to make the field radial
1) Coil is wound on wooden frame
2) Magnetic poles are cylindrically cut
3) A horse - shoe magnet is used
4) The number of windings in the coil is decreased
20. A wire of length $I$ carrying a current $I A$ is bent into a circle. The magnitude of the magnetic moment is
1) $\frac{l I^{2}}{2 \pi}$
2) $\frac{l I^{2}}{4 \pi}$
3) $\frac{l^{2} I}{2 \pi}$
4) $\frac{l^{2} I}{4 \pi}$
21. The magnetic dipole moment of current loop $i$, independent of
1) Magnetic field in which it is lying
2) Number of turns
3) Area of the loop
4) Current in the loop

2008
22. A straight wire of mass 200 g and length 1.5 m carries a current $\mathbf{o f} 2 \mathrm{~A}$. It is suspended in mid - air by a uniform horizontal field $B$. The magnitude of $B$ (in tesla) is (assume $g=9.8 \mathrm{~ms}^{-2}$ )

1) 2
2) 1.5
3) 0.55
4) 0.65
23. Two streams of protons move parallel to each other in the same direction. Then these
1) Do not interact at all
2) Attract each other
3) Repel each other
4) Get rotated to be perpendicular to each other
24. Consider two straight parallel conductors $A$ and $B$ separated by a distance $x$ and carrying individual currents $I_{A}$ and $I_{B}$ respectively. If the two conductors attract each other, it indicates that
1) The two currents are parallel in direction
2) The two currents are anti - parallel in direction
3) The magnetic lines of induction are parallel
4) The magnetic lines of induction are parallel to length of conductors

2007
25. A proton with energy of 2 MeV enters a uniform magnetic field of 2.5 T normally. The magnetic force on the proton is (Take mass of proton to be $1.6 \times 10^{-27} \mathrm{~kg}$ )

1) $3 \times 10^{-12} \mathrm{~N}$
2) $8 \times 10^{-10} \mathrm{~N}$
3) $8 \times 10^{-12} \mathrm{~N}$
4) $2 \times 10^{-10} \mathrm{~N}$
26. Currents of 10 A and 2 A are passed through two parallel wires $A$ and $B$ respectively in opposite directions. If the wire $A$ is infinitely long and length of the wire $B$ is 2 m , the force acting on the conductor $B$ which is situated at 10 cm distance from $A$ will be
1) $5 \times 10^{-5} \mathrm{~N}$
2) $4 \pi \times 10^{-7} \mathrm{~N}$
3) $8 \times 10^{-5} \mathrm{~N}$
4) $8 \pi \times 10^{-7} \mathrm{~N}$
27. Two free parallel wires carrying currents in the opposite directions
1) Attract each other
2) Repel each other
3) Do not affect each other
4) Get rotated to be perpendicular to each other

2006
28. A conducting circular loop of radius $r$ carries a constant current $I$. It is placed in a uniform magnetic field $B_{o}$ such that $B_{o}$ is perpendicular to the plane of the loop. The magnetic force acting on the loop is

1) $\operatorname{Ir} B_{o}$
2) $2 \pi I r B_{o}$
3) $\pi I r B_{o}$
4) Zero
29. A proton moving vertically downward enters a magnetic field pointing towards north. In which direction proton will deflect?
1) East
2) West
3) North
4) South
30. Graph of force per unit length between two long parallel currents carrying conductor and the distance between them is
1) Straight Line
2) Parabola
3) Ellipse
4) Rectangular Hyperbola

2005
31. A coil in the shape of an equilateral triangle of side $l$ is suspended between the pole pieces of a permanent magnet such that $B$ is in plane of the coil. If due to a current $i$ in the triangle a torque $\tau$ acts on it, the side $l$ of the triangle is

1) $\frac{2}{\sqrt{3}}\left(\frac{\tau}{B i}\right)^{1 / 2}$
2) $\frac{2}{\sqrt{3}}\left(\frac{\tau}{B i}\right)$
3) $2\left(\frac{\tau}{\sqrt{3} B i}\right)^{1 / 2}$
4) $\frac{1}{\sqrt{3}} \frac{\tau}{B i}$
32. Two parallel wires carrying currents in the same direction attract each other because of
1) Potential Difference between them
2) Mutual Inductance between them
3) Electric Force betweenWwiw.sakshieducationge@mForce between them
33. The force on a conductor of length $l$ placed in a magnetic field of magnitude $B$ and carrying a current $i$ is given by ( $\theta$ is the angle, the conductor makes with the direction of B)
1) $F=i l B \sin \theta$
2) $F=i^{2} l B^{2} \sin \theta$
3) $F=i l B \cos \theta$
4) $F=\frac{i^{2} l}{B} \sin \theta$

## Force and Torque on a current carrying conductor

Key

1) c
2) $b$
3) $b$
4) $b$
5) $d$
6) c
7) $\mathbf{d}$
8) $\mathbf{a}$ 9) $b$
9) $b$
10) d
11) $\mathbf{d}$
12) $\mathbf{d}$
13) $\mathbf{a}$
14) b
15) $\mathbf{a}$
16) $\mathbf{a}$
17) d
18) $b$
19) $d$
20) $\mathbf{a}$
21) $\mathbf{d}$
22) $\mathbf{c}$ 24) $\mathbf{a}$
23) $\mathbf{c}$
24) c
25) b 28) d
26) $\mathbf{a}$ 30) $\mathbf{a}$
27) $\mathbf{c}$ 32) $\mathbf{d}$ 33) a

Solutions

1. $\frac{1}{2} m v^{2}=e V$

$$
\frac{1}{2} \times 9 \times 10^{-31} \times v^{2}=1.6 \times 10^{-19} \times 182
$$

$$
v^{2}=\frac{1.6 \times 10^{-19} \times 182 \times 2}{9.1 \times 10^{-31}}=64 \times 10^{12}
$$

$$
v=8 \times 10^{6} \mathrm{~ms}^{-1}
$$

2. $\phi=L i$
$L=\frac{\phi}{i}=\frac{10 \times 10^{-6}}{2 \times 10^{-3}}=5 \times 10^{-3}=5 \mathrm{mH}$
3. $\quad$ Energy $=\frac{1}{2} \frac{q^{2}}{C}$
4. We have $\mathrm{M}=\mathrm{NIA}$

$$
B=\mu_{o} n I
$$

Torque, $\mathrm{C}=\mathrm{MB}$
Here, $C=\left(n_{1} I_{1} A\right)\left(\mu_{o} n_{1} I_{2}\right)$
$=\left(10 \times \frac{21}{44} \times 10^{-6}\right)\left(4 \times \frac{22}{7} \times 10^{-7} \times 10^{3} t 2.5\right)=1.5 \times 10^{-8} \mathrm{~N}-\mathrm{m}$
5. $B=\frac{\mu_{o}}{4 \pi} \frac{2 \pi I}{r}=\frac{\mu_{o} I}{2 r}$
$I=\frac{2 B r}{\mu_{o}}$

Also, $A=\pi r^{2}$ or $r=\left(\frac{A}{\pi}\right)^{1 / 2}$

Magnetic moment, $M=I A=\frac{2 \hat{B r}}{\mu_{0}} A=\frac{2 B A}{\mu_{o}} \times\left(\frac{A}{\pi}\right)^{1 / 2}=\frac{2 B A^{3 / 2}}{\mu_{o} \pi^{1 / 2}}$
6. $F=B i l \sin \theta$

$$
=500 \times 10^{-4} \times 3 \times\left(40 \times 10^{-2}\right) \times \frac{1}{2}
$$

$$
=3 \times 10^{-2} N
$$

7. The magnitude of magnetic field B at any point on Y due to current $i_{1}$ in X is given by

$$
\begin{gathered}
B=\frac{\mu_{o}}{2 \pi} \frac{i_{1}}{b} \\
F=i_{2} B l=i_{2}\left(\frac{\mu_{o}}{2 \pi} \frac{i_{1}}{b}\right) l
\end{gathered}
$$

Force per unit length is

$$
\frac{F}{l}=\frac{\mu_{o}}{2 \pi} \frac{i_{1} i_{2}}{b}
$$

Given, $i_{1}=i_{2}=i$, therefore,

$$
\frac{F}{l}=\frac{\mu_{o}}{2 \pi} \frac{i^{2}}{b}
$$

8. Torque $\tau=i A B \sin \theta, i=0.1 A, \theta=90^{\circ}$
$A=\frac{1}{2} \times$ base $\times$ height
or $\quad A=\frac{1}{2} a \times \frac{a \sqrt{3}}{2}$

$$
\begin{aligned}
& =\frac{\sqrt{3} a^{2}}{4}=\frac{\sqrt{3} \times(0.02)^{2}}{4} \\
& =\sqrt{3} \times 10^{-4} \mathrm{~m}^{2} ; \theta=90^{\circ} \\
& \tau=0.1 \times \sqrt{3} \times 10^{-4} \times 5 \times 10^{-2} \sin 90^{\circ} \\
& =5 \sqrt{3} \times 10^{-7} \mathrm{~N}-\mathrm{m}
\end{aligned}
$$

11. $\tau_{\max }=M B$
or

$$
\tau_{\max }=n i \pi r^{2} B
$$

Let number of turns in length $l$ is n so $l=n(2 \pi r)$

$$
\text { or } r=\frac{1}{2 \pi n}
$$

$\Rightarrow \tau_{\max }=\frac{n i \pi B l^{2}}{4 \pi^{2} n^{2}}=\frac{l^{2} i B}{4 \pi n_{\min }}$
$\Rightarrow \tau_{\text {max }} \propto \frac{1}{n_{\text {min }}}$
$\Rightarrow n_{\text {min }}=1$
12. $N B i A \sin \theta=\tau$
$\mathrm{N}, \mathrm{B}, \mathrm{i}$ and A are constants
$\therefore \sin \theta \propto 0.3$
$\cos \theta \propto 0.4$
$\tan \theta=\frac{3}{4} \quad$ and $\quad \sin \theta=\frac{3}{5}$
$B=\frac{\tau}{N i A \sin \theta}$
$B=\frac{0.3 \times 5}{100 \times 5 \times 2 \times 10^{-2} \times 3}=0.05 \mathrm{~T}$
13. $B_{1}=\frac{\mu_{o} i}{2 \pi\left(\frac{r}{2}\right)}$

$$
B_{2}=\frac{\mu_{o} i}{2 \pi\left(\frac{r}{2}\right)}
$$

So, $B_{\text {net }}=0$
14. $B=\frac{\mu_{o}}{4 \pi}\left(\frac{2 \pi i}{a}\right)=\frac{\mu_{o} i}{2 a}$
$M=i\left(\pi a^{2}\right)$
$\therefore \frac{B}{M}=\frac{\mu_{o} i}{2 a} \times \frac{1}{i \pi a^{2}}=\frac{\mu_{o}}{2 \pi a^{3}}=x$ (given)

When both the current and the radius are doubled, the ratio becomes

$$
\frac{\mu_{o}}{2 \pi(2 a)^{3}}=\frac{\mu_{o}}{8\left(2 \pi a^{3}\right)}=\frac{x}{8}
$$

20. $2 \pi r=l$

Area $=\pi r^{2}=\frac{l^{2}}{4 \pi}$

Magnetic moment $=I A=\frac{I l^{2}}{4 \pi}$
22. Magnetic force on straight wire

$$
F=B I l \sin \theta=B I l \sin 90^{\circ}=B I l
$$

For equilibrium of wire in mid - air

$$
\begin{gathered}
\mathrm{F}=\mathrm{mg} \\
B I l=m g \\
\therefore B=\frac{m g}{I l}=\frac{200 \times 10^{-3} \times 9.8}{2 \times 1.5}=0.65 \mathrm{~T}
\end{gathered}
$$

25. $\quad$ Energy of proton $=2 \mathrm{MeV}$

$$
\begin{aligned}
& =2 \times 1.6 \times 10^{-19} \times 10^{6} \mathrm{~J} \\
& =3.2 \times 10^{-13} \mathrm{~J}
\end{aligned}
$$

Magnetic field $(B)=2.5 \mathrm{~T}$
Mass of proton $(m)=1.6 \times 10^{-27} \mathrm{~kg}$

Energy of proton $E=\frac{1}{2} m v^{2}$
$\therefore v=\sqrt{\frac{2 E}{m}}$.

Magnetic force on proton

$$
\begin{aligned}
& F=B q v \sin 90^{\circ}=\mathrm{Bqv} \\
& \begin{aligned}
\therefore F=B q \sqrt{\frac{2 E}{m}}= & 2.5 \times 1.6 \times 10^{-19} \sqrt{\frac{2 \times 3.2 \times 10^{-13}}{1.6 \times 10^{-27}}}=8 \times 10^{-12} \mathrm{~N} \\
& \text { www.sakshieducation.com }
\end{aligned}
\end{aligned}
$$

26. $F=\frac{\mu_{o}}{4 \pi} \cdot \frac{2 I_{1} I_{2}}{r} l$

$$
\begin{aligned}
& I_{1}=10 A, I_{2}=2 A, l=2 \mathrm{~m} \\
& \quad \mathrm{R}=10 \mathrm{~cm}=0.1 \mathrm{~m} \\
& \quad \therefore F=10^{-7} \times \frac{2 \times 10 \times 2 \times 2}{0.1}=8 \times 10^{-5} \mathrm{~N}
\end{aligned}
$$

